Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Tom Aarsen
commited on
Commit
·
2eb890d
1
Parent(s):
d81785e
Introduce new intervals: 100M & 250M and 250M & 500M
Browse files
app.py
CHANGED
@@ -1863,7 +1863,8 @@ def update_url_language(event: gr.SelectData, current_task_language: dict, langu
|
|
1863 |
|
1864 |
NUMERIC_INTERVALS = {
|
1865 |
"<100M": pd.Interval(0, 100, closed="right"),
|
1866 |
-
">100M, <
|
|
|
1867 |
">500M, <1B": pd.Interval(500, 1000, closed="right"),
|
1868 |
">1B": pd.Interval(1000, 1_000_000, closed="right"),
|
1869 |
}
|
@@ -1897,17 +1898,11 @@ def filter_data(search_query, model_types, model_sizes, *full_dataframes):
|
|
1897 |
df = df[reduce(lambda a, b: a | b, masks)]
|
1898 |
|
1899 |
# Apply the model size filtering
|
1900 |
-
if model_sizes !=
|
1901 |
-
masks = []
|
1902 |
-
# Handle the ? only
|
1903 |
-
if "?" in model_sizes:
|
1904 |
-
masks.append(df["Model Size (Million Parameters)"] == "")
|
1905 |
-
model_sizes.remove("?")
|
1906 |
-
# Handle the numeric intervals only
|
1907 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
|
1908 |
sizes = df["Model Size (Million Parameters)"].replace('', 0)
|
1909 |
-
|
1910 |
-
df = df[
|
1911 |
|
1912 |
output_dataframes.append(df)
|
1913 |
return output_dataframes
|
@@ -1937,8 +1932,8 @@ with gr.Blocks(css=css) as block:
|
|
1937 |
)
|
1938 |
filter_model_sizes = gr.CheckboxGroup(
|
1939 |
label="Model sizes (in number of parameters)",
|
1940 |
-
choices=
|
1941 |
-
value=
|
1942 |
interactive=True,
|
1943 |
elem_classes=["filter-checkbox-group"]
|
1944 |
)
|
|
|
1863 |
|
1864 |
NUMERIC_INTERVALS = {
|
1865 |
"<100M": pd.Interval(0, 100, closed="right"),
|
1866 |
+
">100M, <250M": pd.Interval(100, 250, closed="right"),
|
1867 |
+
">250M, <500M": pd.Interval(250, 500, closed="right"),
|
1868 |
">500M, <1B": pd.Interval(500, 1000, closed="right"),
|
1869 |
">1B": pd.Interval(1000, 1_000_000, closed="right"),
|
1870 |
}
|
|
|
1898 |
df = df[reduce(lambda a, b: a | b, masks)]
|
1899 |
|
1900 |
# Apply the model size filtering
|
1901 |
+
if model_sizes != list(NUMERIC_INTERVALS.keys()):
|
|
|
|
|
|
|
|
|
|
|
|
|
1902 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
|
1903 |
sizes = df["Model Size (Million Parameters)"].replace('', 0)
|
1904 |
+
mask = sizes.apply(lambda size: any(numeric_interval.contains(size)))
|
1905 |
+
df = df[mask]
|
1906 |
|
1907 |
output_dataframes.append(df)
|
1908 |
return output_dataframes
|
|
|
1932 |
)
|
1933 |
filter_model_sizes = gr.CheckboxGroup(
|
1934 |
label="Model sizes (in number of parameters)",
|
1935 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
1936 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1937 |
interactive=True,
|
1938 |
elem_classes=["filter-checkbox-group"]
|
1939 |
)
|