Spaces:
Sleeping
Sleeping
File size: 5,728 Bytes
7a68baa d8eec6b 7a68baa d8eec6b 7a68baa d8eec6b 7a68baa d8eec6b 7a68baa d8eec6b 7a68baa d8eec6b 8154130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# import gradio as gr
# import json
# import os
# import sys
# import csv
# import requests
# import json
# import pandas as pd
# import concurrent.futures
# from tqdm import tqdm
# import shutil
# import numpy as np
# from matplotlib import pyplot as plt
# import pickle
# # Read list to memory
# def read_list():
# # for reading also binary mode is important
# with open('mean_aoc_all_papers.pkl', 'rb') as fp:
# n_list = pickle.load(fp)
# return n_list
# mean_citation_list = read_list()
# def generate_plot_maoc(input_maoc):
# sns.set(font_scale = 8)
# sns.set(rc={'figure.figsize':(10,6)})
# sns.set_style(style='whitegrid')
# ax = sns.histplot(mean_citation_list, bins=100, kde=True, color='skyblue')
# kdeline = ax.lines[0]
# xs = kdeline.get_xdata()
# ys = kdeline.get_ydata()
# interpolated_y_maoc = np.interp(input_maoc, kdeline.get_xdata(), kdeline.get_ydata())
# ax.scatter(input_maoc, interpolated_y_maoc,c='r', marker='*',linewidths=5, zorder=2)
# ax.vlines(input_maoc, 0, interpolated_y_maoc, color='tomato', ls='--', lw=2)
# epsilon = 0.3
# ax.text(input_maoc + epsilon, interpolated_y_maoc + epsilon, 'Your paper', {'color': '#DC143C', 'fontsize': 13})
# ax.set_xlabel("mean Age of Citation(mAoC)",fontsize=15)
# ax.set_ylabel("Number of papers",fontsize=15)
# ax.tick_params(axis='both', which='major', labelsize=12)
# return plt
# # sent a request
# def request_to_respose(request_url):
# request_response = requests.get(request_url, headers={'x-api-key': 'qZWKkOKyzP5g9fgjyMmBt1MN2NTC6aT61UklAiyw'})
# return request_response
# def return_clear():
# return None, None, None, None, None
# def compute_output(ssid_paper_id):
# output_num_ref = 0
# output_maoc = 0
# oldest_paper_list = ""
# request_url = f'https://api.semanticscholar.org/graph/v1/paper/{ssid_paper_id}?fields=references,title,venue,year'
# r = request_to_respose(request_url)
# if r.status_code == 200: # if successful request
# s2_ref_paper_keys = [reference_paper_tuple['paperId'] for reference_paper_tuple in r.json()['references']]
# filtered_s2_ref_paper_keys = [s2_ref_paper_key for s2_ref_paper_key in s2_ref_paper_keys if s2_ref_paper_key is not None]
# total_references = len(s2_ref_paper_keys)
# none_references = (len(s2_ref_paper_keys) - len(filtered_s2_ref_paper_keys))
# s2_ref_paper_keys = filtered_s2_ref_paper_keys
# print(r.json())
# s2_paper_key, title, venue, year = r.json()['paperId'], r.json()['title'], r.json()['venue'], r.json()['year']
# reference_year_list = []
# reference_title_list = []
# for ref_paper_key in s2_ref_paper_keys:
# request_url_ref = f'https://api.semanticscholar.org/graph/v1/paper/{ref_paper_key}?fields=references,title,venue,year'
# r_ref = request_to_respose(request_url_ref)
# if r_ref.status_code == 200:
# s2_paper_key_ref, title_ref, venue_ref, year_ref = r_ref.json()['paperId'], r_ref.json()['title'], r_ref.json()['venue'], r_ref.json()['year']
# reference_year_list.append(year_ref)
# reference_title_list.append(title_ref)
# print(f'Number of references for which we got the year = {len(reference_year_list)}')
# output_num_ref = len(reference_year_list)
# aoc_list = [year - year_ref for year_ref in reference_year_list]
# output_maoc = sum(aoc_list)/len(aoc_list)
# sorted_ref_title_list = [x for _,x in sorted(zip(reference_year_list,reference_title_list))]
# sorted_ref_year_list = [x for x,_ in sorted(zip(reference_year_list,reference_title_list))]
# text = ""
# sorted_ref_title_list = sorted_ref_title_list[:min(len(sorted_ref_title_list), 5)]
# sorted_ref_year_list = sorted_ref_year_list[:min(len(sorted_ref_year_list), 5)]
# for i in range(len(sorted_ref_year_list)):
# text += '[' + str(sorted_ref_year_list[i]) + ']' + " Title: " + sorted_ref_title_list[i] + '\n'
# oldest_paper_list = text
# plot_maoc = generate_plot_maoc(output_maoc)
# print(plot_maoc)
# return output_num_ref, output_maoc, oldest_paper_list, gr.update(value=plot_maoc)
# with gr.Blocks() as demo:
# ss_paper_id = gr.Textbox(label='Semantic Scholar ID',placeholder="Enter the Semantic Scholar ID here and press enter...", lines=1)
# submit_btn = gr.Button("Generate")
# with gr.Row():
# num_ref = gr.Textbox(label="Number of references")
# mAoc = gr.Textbox(label="Mean AoC")
# with gr.Row():
# oldest_paper_list = gr.Textbox(label="Top 5 oldest papers cited:",lines=5)
# with gr.Row():
# mAocPlot = gr.Plot(label="Plot")
# clear_btn = gr.Button("Clear")
# submit_btn.click(fn = compute_output, inputs = [ss_paper_id], outputs = [num_ref, mAoc, oldest_paper_list, mAocPlot])
# # clear_btn.click(lambda: None, None, None, queue=False)
# clear_btn.click(fn = return_clear, inputs=[], outputs=[ss_paper_id, num_ref, mAoc, oldest_paper_list, mAocPlot])
# demo.launch()
import openai
import gradio
openai.api_key = "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"
messages = [{"role": "system", "content": "Anhub Online Education Tutor for Any Subjects:"}]
def CustomChatGPT(user_input):
messages.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(
model = "gpt-3.5-turbo",
messages = messages
)
ChatGPT_reply = response["choices"][0]["message"]["content"]
messages.append({"role": "assistant", "content": ChatGPT_reply})
return ChatGPT_reply
demo = gradio.Interface(fn=CustomChatGPT, inputs = "text", outputs = "text", title = "Anhub Metaverse Education Online Tutor for Any Subjects and any Languages @ 24 x 7:")
demo.launch() |