mrungta8 commited on
Commit
7a68baa
·
1 Parent(s): 8154130

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +135 -112
app.py CHANGED
@@ -1,119 +1,142 @@
1
- import gradio as gr
2
- import json
3
- import os
4
- import sys
5
- import csv
6
- import requests
7
- import json
8
- import pandas as pd
9
- import concurrent.futures
10
- from tqdm import tqdm
11
- import shutil
12
- import numpy as np
13
- from matplotlib import pyplot as plt
14
- import pickle
15
-
16
-
17
- # Read list to memory
18
- def read_list():
19
- # for reading also binary mode is important
20
- with open('mean_aoc_all_papers.pkl', 'rb') as fp:
21
- n_list = pickle.load(fp)
22
- return n_list
23
-
24
- mean_citation_list = read_list()
25
-
26
- def generate_plot_maoc(input_maoc):
27
- sns.set(font_scale = 8)
28
- sns.set(rc={'figure.figsize':(10,6)})
29
- sns.set_style(style='whitegrid')
30
-
31
- ax = sns.histplot(mean_citation_list, bins=100, kde=True, color='skyblue')
32
- kdeline = ax.lines[0]
33
- xs = kdeline.get_xdata()
34
- ys = kdeline.get_ydata()
35
-
36
- interpolated_y_maoc = np.interp(input_maoc, kdeline.get_xdata(), kdeline.get_ydata())
37
- ax.scatter(input_maoc, interpolated_y_maoc,c='r', marker='*',linewidths=5, zorder=2)
38
- ax.vlines(input_maoc, 0, interpolated_y_maoc, color='tomato', ls='--', lw=2)
39
- epsilon = 0.3
40
- ax.text(input_maoc + epsilon, interpolated_y_maoc + epsilon, 'Your paper', {'color': '#DC143C', 'fontsize': 13})
41
- ax.set_xlabel("mean Age of Citation(mAoC)",fontsize=15)
42
- ax.set_ylabel("Number of papers",fontsize=15)
43
- ax.tick_params(axis='both', which='major', labelsize=12)
44
- return plt
45
-
46
- # sent a request
47
- def request_to_respose(request_url):
48
- request_response = requests.get(request_url, headers={'x-api-key': 'qZWKkOKyzP5g9fgjyMmBt1MN2NTC6aT61UklAiyw'})
49
- return request_response
50
-
51
- def return_clear():
52
- return None, None, None, None, None
53
-
54
-
55
- def compute_output(ssid_paper_id):
56
- output_num_ref = 0
57
- output_maoc = 0
58
- oldest_paper_list = ""
59
-
60
- request_url = f'https://api.semanticscholar.org/graph/v1/paper/{ssid_paper_id}?fields=references,title,venue,year'
61
- r = request_to_respose(request_url)
62
- if r.status_code == 200: # if successful request
63
- s2_ref_paper_keys = [reference_paper_tuple['paperId'] for reference_paper_tuple in r.json()['references']]
64
- filtered_s2_ref_paper_keys = [s2_ref_paper_key for s2_ref_paper_key in s2_ref_paper_keys if s2_ref_paper_key is not None]
65
- total_references = len(s2_ref_paper_keys)
66
- none_references = (len(s2_ref_paper_keys) - len(filtered_s2_ref_paper_keys))
67
- s2_ref_paper_keys = filtered_s2_ref_paper_keys
68
-
69
- print(r.json())
70
-
71
- s2_paper_key, title, venue, year = r.json()['paperId'], r.json()['title'], r.json()['venue'], r.json()['year']
72
- reference_year_list = []
73
- reference_title_list = []
74
- for ref_paper_key in s2_ref_paper_keys:
75
- request_url_ref = f'https://api.semanticscholar.org/graph/v1/paper/{ref_paper_key}?fields=references,title,venue,year'
76
- r_ref = request_to_respose(request_url_ref)
77
- if r_ref.status_code == 200:
78
- s2_paper_key_ref, title_ref, venue_ref, year_ref = r_ref.json()['paperId'], r_ref.json()['title'], r_ref.json()['venue'], r_ref.json()['year']
79
- reference_year_list.append(year_ref)
80
- reference_title_list.append(title_ref)
81
 
82
- print(f'Number of references for which we got the year = {len(reference_year_list)}')
83
- output_num_ref = len(reference_year_list)
84
- aoc_list = [year - year_ref for year_ref in reference_year_list]
85
- output_maoc = sum(aoc_list)/len(aoc_list)
86
-
87
- sorted_ref_title_list = [x for _,x in sorted(zip(reference_year_list,reference_title_list))]
88
- sorted_ref_year_list = [x for x,_ in sorted(zip(reference_year_list,reference_title_list))]
89
- text = ""
90
- sorted_ref_title_list = sorted_ref_title_list[:min(len(sorted_ref_title_list), 5)]
91
- sorted_ref_year_list = sorted_ref_year_list[:min(len(sorted_ref_year_list), 5)]
92
- for i in range(len(sorted_ref_year_list)):
93
- text += '[' + str(sorted_ref_year_list[i]) + ']' + " Title: " + sorted_ref_title_list[i] + '\n'
94
 
95
- oldest_paper_list = text
96
- plot_maoc = generate_plot_maoc(output_maoc)
97
- print(plot_maoc)
98
 
99
- return output_num_ref, output_maoc, oldest_paper_list, gr.update(value=plot_maoc)
100
-
101
-
102
- with gr.Blocks() as demo:
103
- ss_paper_id = gr.Textbox(label='Semantic Scholar ID',placeholder="Enter the Semantic Scholar ID here and press enter...", lines=1)
104
- submit_btn = gr.Button("Generate")
105
- with gr.Row():
106
- num_ref = gr.Textbox(label="Number of references")
107
- mAoc = gr.Textbox(label="Mean AoC")
108
- with gr.Row():
109
- oldest_paper_list = gr.Textbox(label="Top 5 oldest papers cited:",lines=5)
110
- with gr.Row():
111
- mAocPlot = gr.Plot(label="Plot")
112
 
113
- clear_btn = gr.Button("Clear")
114
 
115
- submit_btn.click(fn = compute_output, inputs = [ss_paper_id], outputs = [num_ref, mAoc, oldest_paper_list, mAocPlot])
116
- # clear_btn.click(lambda: None, None, None, queue=False)
117
- clear_btn.click(fn = return_clear, inputs=[], outputs=[ss_paper_id, num_ref, mAoc, oldest_paper_list, mAocPlot])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
  demo.launch()
 
1
+ # import gradio as gr
2
+ # import json
3
+ # import os
4
+ # import sys
5
+ # import csv
6
+ # import requests
7
+ # import json
8
+ # import pandas as pd
9
+ # import concurrent.futures
10
+ # from tqdm import tqdm
11
+ # import shutil
12
+ # import numpy as np
13
+ # from matplotlib import pyplot as plt
14
+ # import pickle
15
+
16
+
17
+ # # Read list to memory
18
+ # def read_list():
19
+ # # for reading also binary mode is important
20
+ # with open('mean_aoc_all_papers.pkl', 'rb') as fp:
21
+ # n_list = pickle.load(fp)
22
+ # return n_list
23
+
24
+ # mean_citation_list = read_list()
25
+
26
+ # def generate_plot_maoc(input_maoc):
27
+ # sns.set(font_scale = 8)
28
+ # sns.set(rc={'figure.figsize':(10,6)})
29
+ # sns.set_style(style='whitegrid')
30
+
31
+ # ax = sns.histplot(mean_citation_list, bins=100, kde=True, color='skyblue')
32
+ # kdeline = ax.lines[0]
33
+ # xs = kdeline.get_xdata()
34
+ # ys = kdeline.get_ydata()
35
+
36
+ # interpolated_y_maoc = np.interp(input_maoc, kdeline.get_xdata(), kdeline.get_ydata())
37
+ # ax.scatter(input_maoc, interpolated_y_maoc,c='r', marker='*',linewidths=5, zorder=2)
38
+ # ax.vlines(input_maoc, 0, interpolated_y_maoc, color='tomato', ls='--', lw=2)
39
+ # epsilon = 0.3
40
+ # ax.text(input_maoc + epsilon, interpolated_y_maoc + epsilon, 'Your paper', {'color': '#DC143C', 'fontsize': 13})
41
+ # ax.set_xlabel("mean Age of Citation(mAoC)",fontsize=15)
42
+ # ax.set_ylabel("Number of papers",fontsize=15)
43
+ # ax.tick_params(axis='both', which='major', labelsize=12)
44
+ # return plt
45
+
46
+ # # sent a request
47
+ # def request_to_respose(request_url):
48
+ # request_response = requests.get(request_url, headers={'x-api-key': 'qZWKkOKyzP5g9fgjyMmBt1MN2NTC6aT61UklAiyw'})
49
+ # return request_response
50
+
51
+ # def return_clear():
52
+ # return None, None, None, None, None
53
+
54
+
55
+ # def compute_output(ssid_paper_id):
56
+ # output_num_ref = 0
57
+ # output_maoc = 0
58
+ # oldest_paper_list = ""
59
+
60
+ # request_url = f'https://api.semanticscholar.org/graph/v1/paper/{ssid_paper_id}?fields=references,title,venue,year'
61
+ # r = request_to_respose(request_url)
62
+ # if r.status_code == 200: # if successful request
63
+ # s2_ref_paper_keys = [reference_paper_tuple['paperId'] for reference_paper_tuple in r.json()['references']]
64
+ # filtered_s2_ref_paper_keys = [s2_ref_paper_key for s2_ref_paper_key in s2_ref_paper_keys if s2_ref_paper_key is not None]
65
+ # total_references = len(s2_ref_paper_keys)
66
+ # none_references = (len(s2_ref_paper_keys) - len(filtered_s2_ref_paper_keys))
67
+ # s2_ref_paper_keys = filtered_s2_ref_paper_keys
68
+
69
+ # print(r.json())
70
+
71
+ # s2_paper_key, title, venue, year = r.json()['paperId'], r.json()['title'], r.json()['venue'], r.json()['year']
72
+ # reference_year_list = []
73
+ # reference_title_list = []
74
+ # for ref_paper_key in s2_ref_paper_keys:
75
+ # request_url_ref = f'https://api.semanticscholar.org/graph/v1/paper/{ref_paper_key}?fields=references,title,venue,year'
76
+ # r_ref = request_to_respose(request_url_ref)
77
+ # if r_ref.status_code == 200:
78
+ # s2_paper_key_ref, title_ref, venue_ref, year_ref = r_ref.json()['paperId'], r_ref.json()['title'], r_ref.json()['venue'], r_ref.json()['year']
79
+ # reference_year_list.append(year_ref)
80
+ # reference_title_list.append(title_ref)
81
 
82
+ # print(f'Number of references for which we got the year = {len(reference_year_list)}')
83
+ # output_num_ref = len(reference_year_list)
84
+ # aoc_list = [year - year_ref for year_ref in reference_year_list]
85
+ # output_maoc = sum(aoc_list)/len(aoc_list)
86
+
87
+ # sorted_ref_title_list = [x for _,x in sorted(zip(reference_year_list,reference_title_list))]
88
+ # sorted_ref_year_list = [x for x,_ in sorted(zip(reference_year_list,reference_title_list))]
89
+ # text = ""
90
+ # sorted_ref_title_list = sorted_ref_title_list[:min(len(sorted_ref_title_list), 5)]
91
+ # sorted_ref_year_list = sorted_ref_year_list[:min(len(sorted_ref_year_list), 5)]
92
+ # for i in range(len(sorted_ref_year_list)):
93
+ # text += '[' + str(sorted_ref_year_list[i]) + ']' + " Title: " + sorted_ref_title_list[i] + '\n'
94
 
95
+ # oldest_paper_list = text
96
+ # plot_maoc = generate_plot_maoc(output_maoc)
97
+ # print(plot_maoc)
98
 
99
+ # return output_num_ref, output_maoc, oldest_paper_list, gr.update(value=plot_maoc)
100
+
101
+
102
+ # with gr.Blocks() as demo:
103
+ # ss_paper_id = gr.Textbox(label='Semantic Scholar ID',placeholder="Enter the Semantic Scholar ID here and press enter...", lines=1)
104
+ # submit_btn = gr.Button("Generate")
105
+ # with gr.Row():
106
+ # num_ref = gr.Textbox(label="Number of references")
107
+ # mAoc = gr.Textbox(label="Mean AoC")
108
+ # with gr.Row():
109
+ # oldest_paper_list = gr.Textbox(label="Top 5 oldest papers cited:",lines=5)
110
+ # with gr.Row():
111
+ # mAocPlot = gr.Plot(label="Plot")
112
 
113
+ # clear_btn = gr.Button("Clear")
114
 
115
+ # submit_btn.click(fn = compute_output, inputs = [ss_paper_id], outputs = [num_ref, mAoc, oldest_paper_list, mAocPlot])
116
+ # # clear_btn.click(lambda: None, None, None, queue=False)
117
+ # clear_btn.click(fn = return_clear, inputs=[], outputs=[ss_paper_id, num_ref, mAoc, oldest_paper_list, mAocPlot])
118
+
119
+ # demo.launch()
120
+
121
+ import openai
122
+ import gradio
123
+
124
+ openai.api_key = "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"
125
+
126
+ messages = [{"role": "system", "content": "Anhub Online Education Tutor for Any Subjects:"}]
127
+
128
+ def CustomChatGPT(user_input):
129
+ messages.append({"role": "user", "content": user_input})
130
+ response = openai.ChatCompletion.create(
131
+ model = "gpt-3.5-turbo",
132
+ messages = messages
133
+ )
134
+ ChatGPT_reply = response["choices"][0]["message"]["content"]
135
+ messages.append({"role": "assistant", "content": ChatGPT_reply})
136
+ return ChatGPT_reply
137
+
138
+ demo = gradio.Interface(fn=CustomChatGPT, inputs = "text", outputs = "text", title = "Anhub Metaverse Education Online Tutor for Any Subjects and any Languages @ 24 x 7:")
139
+
140
+
141
 
142
  demo.launch()