mrolando commited on
Commit
0592ce5
·
1 Parent(s): 74138e0
Files changed (1) hide show
  1. app.py +15 -18
app.py CHANGED
@@ -19,22 +19,19 @@ pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype)
19
  pipe = pipe.to(device)
20
  # pipe.unet = torch.compile(pipe.unet)
21
  #pipe.unet = torch.compile(pipe.unet)
22
-
23
-
24
-
25
  import base64
26
 
27
  with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
28
  encoded_image = base64.b64encode(image_file.read()).decode()
29
 
30
- CKPT = "facebook/nllb-200-distilled-600M"
31
 
32
- model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
33
- tokenizer = AutoTokenizer.from_pretrained(CKPT)
34
  def generate_sound(text,steps,audio_length,negative_prompt):
35
  print(text)
36
- text=translate_text(text)
37
- negative_prompt = translate_text(negative_prompt)
38
  print(text)
39
  waveforms = pipe(text,
40
  num_inference_steps=steps,
@@ -43,17 +40,17 @@ def generate_sound(text,steps,audio_length,negative_prompt):
43
  rate =16000
44
  return rate, waveforms[0]
45
 
46
- def translate_text(text):
47
- translation_pipeline = pipeline("translation",
48
- model=model,
49
- tokenizer=tokenizer,
50
- src_lang="spa_Latn",
51
- tgt_lang="eng_Latn",
52
- max_length=400,
53
- device=device)
54
 
55
- result = translation_pipeline(text)
56
- return result[0]['translation_text']
57
  # def translate_text(text):
58
  # text = es_en_translator(text)[0].get("translation_text")
59
  # return text
 
19
  pipe = pipe.to(device)
20
  # pipe.unet = torch.compile(pipe.unet)
21
  #pipe.unet = torch.compile(pipe.unet)
 
 
 
22
  import base64
23
 
24
  with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
25
  encoded_image = base64.b64encode(image_file.read()).decode()
26
 
27
+ # CKPT = "facebook/nllb-200-distilled-600M"
28
 
29
+ # model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
30
+ # tokenizer = AutoTokenizer.from_pretrained(CKPT)
31
  def generate_sound(text,steps,audio_length,negative_prompt):
32
  print(text)
33
+ # text=translate_text(text)
34
+ # negative_prompt = translate_text(negative_prompt)
35
  print(text)
36
  waveforms = pipe(text,
37
  num_inference_steps=steps,
 
40
  rate =16000
41
  return rate, waveforms[0]
42
 
43
+ # def translate_text(text):
44
+ # translation_pipeline = pipeline("translation",
45
+ # model=model,
46
+ # tokenizer=tokenizer,
47
+ # src_lang="spa_Latn",
48
+ # tgt_lang="eng_Latn",
49
+ # max_length=400,
50
+ # device=device)
51
 
52
+ # result = translation_pipeline(text)
53
+ # return result[0]['translation_text']
54
  # def translate_text(text):
55
  # text = es_en_translator(text)[0].get("translation_text")
56
  # return text