mrolando commited on
Commit
74138e0
·
1 Parent(s): 2827f70

changed model translation

Browse files
Files changed (1) hide show
  1. app.py +18 -11
app.py CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
4
  from transformers import pipeline
5
  #from googletrans import Translator
6
  import os
7
-
8
 
9
 
10
  if torch.cuda.is_available():
@@ -27,14 +27,14 @@ import base64
27
  with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
28
  encoded_image = base64.b64encode(image_file.read()).decode()
29
 
 
30
 
 
 
31
  def generate_sound(text,steps,audio_length,negative_prompt):
32
  print(text)
33
- # text=translate_text(text)
34
- text = translate_text(text)
35
  negative_prompt = translate_text(negative_prompt)
36
- #translator = Translator()
37
- #text=translator.translate(text, src='es',dest="en").text
38
  print(text)
39
  waveforms = pipe(text,
40
  num_inference_steps=steps,
@@ -42,15 +42,21 @@ def generate_sound(text,steps,audio_length,negative_prompt):
42
  negative_prompt = negative_prompt).audios
43
  rate =16000
44
  return rate, waveforms[0]
45
- #return gr.make_waveform((rate, waveforms[0]))
46
-
47
- es_en_translator = pipeline("translation",model = "Helsinki-NLP/opus-mt-es-en")
48
-
49
 
50
  def translate_text(text):
51
- text = es_en_translator(text)[0].get("translation_text")
52
- return text
 
 
 
 
 
53
 
 
 
 
 
 
54
  with gr.Blocks() as demo:
55
  gr.Markdown("""
56
  <center>
@@ -90,4 +96,5 @@ with gr.Blocks() as demo:
90
  btn.click(fn=generate_sound, inputs=[prompt,steps,audio_len,negative_prompt], outputs=[output]) #steps,guidance,width,height]
91
 
92
  gr.close_all()
 
93
  demo.launch()
 
4
  from transformers import pipeline
5
  #from googletrans import Translator
6
  import os
7
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
8
 
9
 
10
  if torch.cuda.is_available():
 
27
  with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
28
  encoded_image = base64.b64encode(image_file.read()).decode()
29
 
30
+ CKPT = "facebook/nllb-200-distilled-600M"
31
 
32
+ model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
33
+ tokenizer = AutoTokenizer.from_pretrained(CKPT)
34
  def generate_sound(text,steps,audio_length,negative_prompt):
35
  print(text)
36
+ text=translate_text(text)
 
37
  negative_prompt = translate_text(negative_prompt)
 
 
38
  print(text)
39
  waveforms = pipe(text,
40
  num_inference_steps=steps,
 
42
  negative_prompt = negative_prompt).audios
43
  rate =16000
44
  return rate, waveforms[0]
 
 
 
 
45
 
46
  def translate_text(text):
47
+ translation_pipeline = pipeline("translation",
48
+ model=model,
49
+ tokenizer=tokenizer,
50
+ src_lang="spa_Latn",
51
+ tgt_lang="eng_Latn",
52
+ max_length=400,
53
+ device=device)
54
 
55
+ result = translation_pipeline(text)
56
+ return result[0]['translation_text']
57
+ # def translate_text(text):
58
+ # text = es_en_translator(text)[0].get("translation_text")
59
+ # return text
60
  with gr.Blocks() as demo:
61
  gr.Markdown("""
62
  <center>
 
96
  btn.click(fn=generate_sound, inputs=[prompt,steps,audio_len,negative_prompt], outputs=[output]) #steps,guidance,width,height]
97
 
98
  gr.close_all()
99
+ demo.queue()
100
  demo.launch()