Jae-Won Chung
New leaderboard prototype
b10121d

A newer version of the Gradio SDK is available: 5.13.0

Upgrade

Diffusion model (Image to Video)

This benchmark suite benchmarks diffusion models with the image-to-video task.

Setup

Docker images

docker build -t mlenergy/leaderboard:diffusion-i2v .

HuggingFace cache directory

The scripts assume the HuggingFace cache directory will be under /data/leaderboard/hfcache on the node that runs this benchmark.

Benchmarking

Obtaining one datapoint

The Docker image we've build runs python scripts/benchmark_one_datapoint.py as its ENTRYPOINT.

docker run \
  --gpus '"device=0"' \
  --cap-add SYS_ADMIN \
  -v /data/leaderboard/hfcache:/root/.cache/huggingface 
  -v $(pwd):/workspace/image-to-video \
  mlenergy/leaderboard:diffusion-i2v \
  --result-root results \
  --batch-size 2 \
  --power-limit 300 \
  --save-every 5 \
  --model ali-vilab/i2vgen-xl \
  --dataset-path sharegpt4video/sharegpt4video_100.json \
  --add-text-prompt \
  --num-frames 16 \
  --fps 16 \
  --huggingface-token $HF_TOKEN

Obtaining all datapoints for a single model

Export your HuggingFace hub token as environment variable $HF_TOKEN.

Run scripts/benchmark_one_model.py.

Running the entire suite with Pegasus

You can use pegasus to run the entire benchmark suite. Queue and host files are in ./pegasus.