CS626-NEI / app.py
madhavkotecha's picture
Update app.py
59d8c9f verified
import pickle
import nltk
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import classification_report
from nltk.tokenize import word_tokenize
from datasets import load_dataset
import numpy as np
from tqdm import tqdm
import gradio as gr
import matplotlib.pyplot as plt
from sklearn import metrics
nltk.download('stopwords')
nltk.download('punkt_tab')
SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
Features_count = 6
SEED = 42
SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
connectors = set(["of", "in", "and", "for", "to", "with", "at", "from"])
start_words = set(["the", "a", "an", "this", "that", "these", "those", "my", "your", "his", "her", "its", "our", "their", "few", "many", "several", "all", "most", "some", "any", "every", "each", "either", "neither", "both", "another", "other", "more", "less", "fewer", "little", "much", "great", "good", "bad", "first", "second", "third", "last", "next", "previous"])
Features_count = 6
SEED = 42
class NEI:
def __init__(self):
self.model = None
self.scaler = StandardScaler()
self.vectorizer = DictVectorizer(sparse=True)
self.tagset = ['No-Name[0]', 'Name[1]']
def load_dataset(self, file):
sentences = []
sentence = []
with open(file, 'r', encoding='utf-8') as file:
for line in file:
if line.strip() == "":
if sentence:
sentences.append(sentence)
sentence = []
continue
word_info = line.strip().split()
if len(word_info) != 4:
continue
word, pos, chunk, nei = word_info
sentence.append((word, pos, nei))
if sentence:
sentences.append(sentence)
return sentences
def performance(self, y_true, y_pred):
print(classification_report(y_true, y_pred))
precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)
f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")
def confusion_matrix(self,y_true,y_pred):
matrix = metrics.confusion_matrix(y_true,y_pred)
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
# disp = metrics.ConfusionMatrixDisplay(confusion_matrix=normalized_matrix, display_labels=self.tagset)
fig, ax = plt.subplots()
# disp.plot(cmap=plt.cm.GnBu, ax=ax, colorbar=True)
ax.xaxis.set_ticks_position('top')
ax.xaxis.set_label_position('top')
plt.xticks(np.arange(len(self.tagset)), self.tagset)
plt.yticks(np.arange(len(self.tagset)), self.tagset)
for i in range(normalized_matrix.shape[0]):
for j in range(normalized_matrix.shape[1]):
text = f"{normalized_matrix[i, j]:.2f}"
ax.text(j, i, text, ha="center", va="center", color="black")
plt.title("Normalized Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
plt.colorbar()
plt.savefig('Confusion_Matrix.png')
# plt.xticks(np.arange(len(self.tagset)), self.tagset)
# plt.yticks(np.arange(len(self.tagset)), self.tagset)
# for i in range(normalized_matrix.shape[0]):
# for j in range(normalized_matrix.shape[1]):
# plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
# plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
# plt.colorbar()
# plt.savefig('Confusion_Matrix.png')
def vectorize(self, w, scaled_position, prev_tag=0, next_tag=0):
is_titlecase = 1 if w[0].isupper() else 0
is_allcaps = 1 if w.isupper() else 0
is_sw = 1 if w.lower() in SW else 0
is_punct = 1 if w in PUNCT else 0
# is_surrounded_by_entities = 1 if (prev_tag > 0 and next_tag > 0) else 0
is_connector = 1 if (w.lower() in connectors) and (prev_tag > 0 and next_tag > 0) else 0
# is_start_of_sentence = 1 if (scaled_position == 0 or prev_token in [".", "!", "?"]) and w.lower() not in start_words else 0
# is_start_of_sentence = 1 if scaled_position == 0 else 0
return [is_titlecase, is_allcaps, len(w), is_sw, is_punct, is_connector, scaled_position]
def create_data(self, data):
words, features, labels = [], [], []
for d in tqdm(data):
tags = d["ner_tags"]
tokens = d["tokens"]
for i, token in enumerate(tokens):
prev_tag = tags[i - 1] if i > 0 else 0
next_tag = tags[i + 1] if i < len(tokens) - 1 else 0
x = self.vectorize(token, scaled_position=(i / len(tokens)), prev_tag=prev_tag, next_tag=next_tag)
y = 1 if tags[i] > 0 else 0
features.append(x)
labels.append(y)
words.extend(tokens)
return np.array(words, dtype="object"), np.array(features, dtype=np.float32), np.array(labels, dtype=np.float32)
def train(self, train_dataset):
_, X_train, y_train = self.create_data(train_dataset)
self.scaler.fit(X_train)
X_train = self.scaler.transform(X_train)
self.model = SVC(C=1.0, kernel="linear", class_weight="balanced", random_state=SEED, verbose=True)
self.model.fit(X_train, y_train)
def evaluate(self, val_data):
_, X_val, y_val = self.create_data(val_data)
X_val = self.scaler.transform(X_val)
y_pred_val = self.model.predict(X_val)
# print(classification_report(y_true=y_val, y_pred=y_pred_val))
print(metrics.confusion_matrix(y_val,y_pred_val))
self.confusion_matrix(y_val,y_pred_val)
self.performance(y_val,y_pred_val)
def infer(self, sentence):
tokens = word_tokenize(sentence)
features = []
raw_features = [self.vectorize(token, i / len(tokens)) for i, token in enumerate(tokens)]
raw_features = np.array(raw_features, dtype=np.float32)
scaled_features = self.scaler.transform(raw_features)
y_pred = self.model.predict(scaled_features)
for i, token in enumerate(tokens):
prev_tag = y_pred[i - 1] if i > 0 else 0
next_tag = y_pred[i + 1] if i < len(tokens) - 1 else 0
feature_with_context = self.vectorize(token, i / len(tokens), prev_tag, next_tag)
features.append(feature_with_context)
features = np.array(features, dtype=np.float32)
scaled_features = self.scaler.transform(features)
y_pred = self.model.predict(scaled_features)
return list(zip(tokens, y_pred))
data = load_dataset("conll2003", trust_remote_code=True)
nei_model = NEI()
# Training the model
nei_model.train(data["train"])
# Evaluating the model
nei_model.evaluate(data["validation"])
def annotate(text):
predictions = nei_model.infer(text)
annotated_output = " ".join([f"{word}_{int(label)} " for word, label in predictions])
return annotated_output
interface = gr.Interface(fn = annotate,
inputs = gr.Textbox(
label="Input Sentence",
placeholder="Enter your sentence here...",
),
outputs = gr.Textbox(
label="Tagged Output",
placeholder="Tagged sentence appears here...",
),
title = "Named Entity Recognition",
description = "CS626 Assignment 3 (Autumn 2024)",
theme=gr.themes.Soft())
interface.launch()