File size: 8,598 Bytes
7fc6fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3944f2
3e093c4
 
7fc6fc7
 
 
 
 
ce62bb3
 
 
 
 
 
 
7fc6fc7
 
 
 
 
ce62bb3
7fc6fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce62bb3
 
 
 
 
 
7fc6fc7
 
 
ce62bb3
 
 
 
 
 
7fc6fc7
 
 
ce62bb3
 
 
 
 
 
 
 
 
59d8c9f
ce62bb3
 
 
 
59d8c9f
ce62bb3
 
 
 
7fc6fc7
 
 
 
 
 
 
ce62bb3
 
59d8c9f
7fc6fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89435c1
ce62bb3
7fc6fc7
 
 
 
 
ce62bb3
 
59d8c9f
ce62bb3
 
 
 
 
 
 
 
59d8c9f
ce62bb3
 
7fc6fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce62bb3
7fc6fc7
 
 
 
 
 
 
 
 
 
 
 
ce62bb3
7fc6fc7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import pickle
import nltk
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import classification_report
from nltk.tokenize import word_tokenize
from datasets import load_dataset
import numpy as np
from tqdm import tqdm
import gradio as gr
import matplotlib.pyplot as plt
from sklearn import metrics

nltk.download('stopwords')
nltk.download('punkt_tab')

SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
Features_count = 6
SEED = 42

SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
connectors = set(["of", "in", "and", "for", "to", "with", "at", "from"])
start_words = set(["the", "a", "an", "this", "that", "these", "those", "my", "your", "his", "her", "its", "our", "their", "few", "many", "several", "all", "most", "some", "any", "every", "each", "either", "neither", "both", "another", "other", "more", "less", "fewer", "little", "much", "great", "good", "bad", "first", "second", "third", "last", "next", "previous"])
Features_count = 6
SEED = 42

class NEI:
    def __init__(self):
        self.model = None
        self.scaler = StandardScaler()
        self.vectorizer = DictVectorizer(sparse=True)
        self.tagset = ['No-Name[0]', 'Name[1]']
    
    def load_dataset(self, file):
        sentences = []
        sentence = []
        with open(file, 'r', encoding='utf-8') as file:
            for line in file:
                if line.strip() == "":
                    if sentence:
                        sentences.append(sentence)
                        sentence = []
                    continue
                word_info = line.strip().split()
                if len(word_info) != 4:
                    continue
                word, pos, chunk, nei = word_info
                sentence.append((word, pos, nei))
            if sentence:
                sentences.append(sentence)
        return sentences


    def performance(self, y_true, y_pred):
        print(classification_report(y_true, y_pred))
        precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
        recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)
        f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
        f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
        f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
        print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")

    def confusion_matrix(self,y_true,y_pred):
        matrix = metrics.confusion_matrix(y_true,y_pred)
        normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)

        # disp = metrics.ConfusionMatrixDisplay(confusion_matrix=normalized_matrix, display_labels=self.tagset)
        fig, ax = plt.subplots()
        # disp.plot(cmap=plt.cm.GnBu, ax=ax, colorbar=True)
        ax.xaxis.set_ticks_position('top')
        ax.xaxis.set_label_position('top')
        plt.xticks(np.arange(len(self.tagset)), self.tagset)
        plt.yticks(np.arange(len(self.tagset)), self.tagset)
        for i in range(normalized_matrix.shape[0]):
            for j in range(normalized_matrix.shape[1]):
                text = f"{normalized_matrix[i, j]:.2f}"
                ax.text(j, i, text, ha="center", va="center", color="black")
        plt.title("Normalized Confusion Matrix")
        plt.xlabel("Predicted Label")
        plt.ylabel("True Label")
        plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
        plt.colorbar()
        plt.savefig('Confusion_Matrix.png')
        # plt.xticks(np.arange(len(self.tagset)), self.tagset)
        # plt.yticks(np.arange(len(self.tagset)), self.tagset)
        # for i in range(normalized_matrix.shape[0]):
        #         for j in range(normalized_matrix.shape[1]):
        #             plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
        # plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
        # plt.colorbar()
        # plt.savefig('Confusion_Matrix.png')

    def vectorize(self, w, scaled_position, prev_tag=0, next_tag=0):
        is_titlecase = 1 if w[0].isupper() else 0
        is_allcaps = 1 if w.isupper() else 0
        is_sw = 1 if w.lower() in SW else 0
        is_punct = 1 if w in PUNCT else 0
        # is_surrounded_by_entities = 1 if (prev_tag > 0 and next_tag > 0) else 0
        is_connector = 1 if (w.lower() in connectors) and (prev_tag > 0 and next_tag > 0) else 0
        # is_start_of_sentence = 1 if (scaled_position == 0 or prev_token in [".", "!", "?"]) and w.lower() not in start_words else 0
        # is_start_of_sentence = 1 if scaled_position == 0 else 0
        return [is_titlecase, is_allcaps, len(w), is_sw, is_punct, is_connector, scaled_position]

    def create_data(self, data):
        words, features, labels = [], [], []
        for d in tqdm(data):
            tags = d["ner_tags"]
            tokens = d["tokens"]
            for i, token in enumerate(tokens):
                prev_tag = tags[i - 1] if i > 0 else 0
                next_tag = tags[i + 1] if i < len(tokens) - 1 else 0
                x = self.vectorize(token, scaled_position=(i / len(tokens)), prev_tag=prev_tag, next_tag=next_tag)
                y = 1 if tags[i] > 0 else 0
                features.append(x)
                labels.append(y)
            words.extend(tokens)
        return np.array(words, dtype="object"), np.array(features, dtype=np.float32), np.array(labels, dtype=np.float32)

    def train(self, train_dataset):
        _, X_train, y_train = self.create_data(train_dataset)
        self.scaler.fit(X_train)
        X_train = self.scaler.transform(X_train)
        self.model = SVC(C=1.0, kernel="linear", class_weight="balanced", random_state=SEED, verbose=True)
        self.model.fit(X_train, y_train)

    def evaluate(self, val_data):
        _, X_val, y_val = self.create_data(val_data)
        X_val = self.scaler.transform(X_val)
        y_pred_val = self.model.predict(X_val)
        # print(classification_report(y_true=y_val, y_pred=y_pred_val))
        print(metrics.confusion_matrix(y_val,y_pred_val))
        self.confusion_matrix(y_val,y_pred_val)
        self.performance(y_val,y_pred_val)

    def infer(self, sentence):
        tokens = word_tokenize(sentence)
        features = []

        raw_features = [self.vectorize(token, i / len(tokens)) for i, token in enumerate(tokens)]
        raw_features = np.array(raw_features, dtype=np.float32)
        scaled_features = self.scaler.transform(raw_features)
        y_pred = self.model.predict(scaled_features)

        for i, token in enumerate(tokens):
            prev_tag = y_pred[i - 1] if i > 0 else 0
            next_tag = y_pred[i + 1] if i < len(tokens) - 1 else 0

            feature_with_context = self.vectorize(token, i / len(tokens), prev_tag, next_tag)
            features.append(feature_with_context)

        features = np.array(features, dtype=np.float32)
        scaled_features = self.scaler.transform(features)
        y_pred = self.model.predict(scaled_features)
        return list(zip(tokens, y_pred))

data = load_dataset("conll2003", trust_remote_code=True)
nei_model = NEI()

# Training the model
nei_model.train(data["train"])

# Evaluating the model
nei_model.evaluate(data["validation"])

def annotate(text):
    predictions = nei_model.infer(text)
    annotated_output = " ".join([f"{word}_{int(label)}  " for word, label in predictions])
    return annotated_output

interface = gr.Interface(fn = annotate,
                         inputs = gr.Textbox(
                             label="Input Sentence",
                             placeholder="Enter your sentence here...",
                         ),
                         outputs = gr.Textbox(
                             label="Tagged Output",
                             placeholder="Tagged sentence appears here...",
                         ),
                         title = "Named Entity Recognition",
                         description = "CS626 Assignment 3 (Autumn 2024)",
                         theme=gr.themes.Soft())
interface.launch()