Spaces:
Runtime error
Runtime error
File size: 8,598 Bytes
7fc6fc7 d3944f2 3e093c4 7fc6fc7 ce62bb3 7fc6fc7 ce62bb3 7fc6fc7 ce62bb3 7fc6fc7 ce62bb3 7fc6fc7 ce62bb3 59d8c9f ce62bb3 59d8c9f ce62bb3 7fc6fc7 ce62bb3 59d8c9f 7fc6fc7 89435c1 ce62bb3 7fc6fc7 ce62bb3 59d8c9f ce62bb3 59d8c9f ce62bb3 7fc6fc7 ce62bb3 7fc6fc7 ce62bb3 7fc6fc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import pickle
import nltk
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import classification_report
from nltk.tokenize import word_tokenize
from datasets import load_dataset
import numpy as np
from tqdm import tqdm
import gradio as gr
import matplotlib.pyplot as plt
from sklearn import metrics
nltk.download('stopwords')
nltk.download('punkt_tab')
SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
Features_count = 6
SEED = 42
SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
connectors = set(["of", "in", "and", "for", "to", "with", "at", "from"])
start_words = set(["the", "a", "an", "this", "that", "these", "those", "my", "your", "his", "her", "its", "our", "their", "few", "many", "several", "all", "most", "some", "any", "every", "each", "either", "neither", "both", "another", "other", "more", "less", "fewer", "little", "much", "great", "good", "bad", "first", "second", "third", "last", "next", "previous"])
Features_count = 6
SEED = 42
class NEI:
def __init__(self):
self.model = None
self.scaler = StandardScaler()
self.vectorizer = DictVectorizer(sparse=True)
self.tagset = ['No-Name[0]', 'Name[1]']
def load_dataset(self, file):
sentences = []
sentence = []
with open(file, 'r', encoding='utf-8') as file:
for line in file:
if line.strip() == "":
if sentence:
sentences.append(sentence)
sentence = []
continue
word_info = line.strip().split()
if len(word_info) != 4:
continue
word, pos, chunk, nei = word_info
sentence.append((word, pos, nei))
if sentence:
sentences.append(sentence)
return sentences
def performance(self, y_true, y_pred):
print(classification_report(y_true, y_pred))
precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)
f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")
def confusion_matrix(self,y_true,y_pred):
matrix = metrics.confusion_matrix(y_true,y_pred)
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
# disp = metrics.ConfusionMatrixDisplay(confusion_matrix=normalized_matrix, display_labels=self.tagset)
fig, ax = plt.subplots()
# disp.plot(cmap=plt.cm.GnBu, ax=ax, colorbar=True)
ax.xaxis.set_ticks_position('top')
ax.xaxis.set_label_position('top')
plt.xticks(np.arange(len(self.tagset)), self.tagset)
plt.yticks(np.arange(len(self.tagset)), self.tagset)
for i in range(normalized_matrix.shape[0]):
for j in range(normalized_matrix.shape[1]):
text = f"{normalized_matrix[i, j]:.2f}"
ax.text(j, i, text, ha="center", va="center", color="black")
plt.title("Normalized Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
plt.colorbar()
plt.savefig('Confusion_Matrix.png')
# plt.xticks(np.arange(len(self.tagset)), self.tagset)
# plt.yticks(np.arange(len(self.tagset)), self.tagset)
# for i in range(normalized_matrix.shape[0]):
# for j in range(normalized_matrix.shape[1]):
# plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
# plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
# plt.colorbar()
# plt.savefig('Confusion_Matrix.png')
def vectorize(self, w, scaled_position, prev_tag=0, next_tag=0):
is_titlecase = 1 if w[0].isupper() else 0
is_allcaps = 1 if w.isupper() else 0
is_sw = 1 if w.lower() in SW else 0
is_punct = 1 if w in PUNCT else 0
# is_surrounded_by_entities = 1 if (prev_tag > 0 and next_tag > 0) else 0
is_connector = 1 if (w.lower() in connectors) and (prev_tag > 0 and next_tag > 0) else 0
# is_start_of_sentence = 1 if (scaled_position == 0 or prev_token in [".", "!", "?"]) and w.lower() not in start_words else 0
# is_start_of_sentence = 1 if scaled_position == 0 else 0
return [is_titlecase, is_allcaps, len(w), is_sw, is_punct, is_connector, scaled_position]
def create_data(self, data):
words, features, labels = [], [], []
for d in tqdm(data):
tags = d["ner_tags"]
tokens = d["tokens"]
for i, token in enumerate(tokens):
prev_tag = tags[i - 1] if i > 0 else 0
next_tag = tags[i + 1] if i < len(tokens) - 1 else 0
x = self.vectorize(token, scaled_position=(i / len(tokens)), prev_tag=prev_tag, next_tag=next_tag)
y = 1 if tags[i] > 0 else 0
features.append(x)
labels.append(y)
words.extend(tokens)
return np.array(words, dtype="object"), np.array(features, dtype=np.float32), np.array(labels, dtype=np.float32)
def train(self, train_dataset):
_, X_train, y_train = self.create_data(train_dataset)
self.scaler.fit(X_train)
X_train = self.scaler.transform(X_train)
self.model = SVC(C=1.0, kernel="linear", class_weight="balanced", random_state=SEED, verbose=True)
self.model.fit(X_train, y_train)
def evaluate(self, val_data):
_, X_val, y_val = self.create_data(val_data)
X_val = self.scaler.transform(X_val)
y_pred_val = self.model.predict(X_val)
# print(classification_report(y_true=y_val, y_pred=y_pred_val))
print(metrics.confusion_matrix(y_val,y_pred_val))
self.confusion_matrix(y_val,y_pred_val)
self.performance(y_val,y_pred_val)
def infer(self, sentence):
tokens = word_tokenize(sentence)
features = []
raw_features = [self.vectorize(token, i / len(tokens)) for i, token in enumerate(tokens)]
raw_features = np.array(raw_features, dtype=np.float32)
scaled_features = self.scaler.transform(raw_features)
y_pred = self.model.predict(scaled_features)
for i, token in enumerate(tokens):
prev_tag = y_pred[i - 1] if i > 0 else 0
next_tag = y_pred[i + 1] if i < len(tokens) - 1 else 0
feature_with_context = self.vectorize(token, i / len(tokens), prev_tag, next_tag)
features.append(feature_with_context)
features = np.array(features, dtype=np.float32)
scaled_features = self.scaler.transform(features)
y_pred = self.model.predict(scaled_features)
return list(zip(tokens, y_pred))
data = load_dataset("conll2003", trust_remote_code=True)
nei_model = NEI()
# Training the model
nei_model.train(data["train"])
# Evaluating the model
nei_model.evaluate(data["validation"])
def annotate(text):
predictions = nei_model.infer(text)
annotated_output = " ".join([f"{word}_{int(label)} " for word, label in predictions])
return annotated_output
interface = gr.Interface(fn = annotate,
inputs = gr.Textbox(
label="Input Sentence",
placeholder="Enter your sentence here...",
),
outputs = gr.Textbox(
label="Tagged Output",
placeholder="Tagged sentence appears here...",
),
title = "Named Entity Recognition",
description = "CS626 Assignment 3 (Autumn 2024)",
theme=gr.themes.Soft())
interface.launch() |