luulinh90s's picture
update
9ff73e7
raw
history blame
11.3 kB
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session
import json
import random
import os
import string
import logging
from datetime import datetime
from huggingface_hub import login, HfApi, hf_hub_download
# Set up logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
])
logger = logging.getLogger(__name__)
# Use the Hugging Face token from environment variables
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
else:
logger.error("HF_TOKEN not found in environment variables")
app = Flask(__name__)
app.config['SECRET_KEY'] = 'supersecretkey' # Change this to a random secret key
# Directories for visualizations
VISUALIZATION_DIRS = {
"No-XAI": "htmls_NO_XAI_mod",
"Dater": "htmls_DATER_mod",
"Chain-of-Table": "htmls_COT_mod",
"Plan-of-SQLs": "htmls_POS_mod2"
}
METHODS = ["No-XAI", "Dater", "Chain-of-Table", "Plan-of-SQLs"]
def save_session_data(username, data):
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f'{username}_{timestamp}_session.json'
json_data = json.dumps(data, indent=4)
temp_file_path = f"/tmp/{file_name}"
with open(temp_file_path, 'w') as f:
f.write(json_data)
api = HfApi()
api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=f"session_data_foward_simulation/{file_name}",
repo_id="luulinh90s/Tabular-LLM-Study-Data",
repo_type="space",
)
os.remove(temp_file_path)
logger.info(f"Session data saved for user {username} in Hugging Face Data Space")
except Exception as e:
logger.exception(f"Error saving session data for user {username}: {e}")
def load_session_data(username):
try:
api = HfApi()
files = api.list_repo_files(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space")
user_files = [f for f in files if f.startswith(f'session_data_foward_simulation/{username}_') and f.endswith('_session.json')]
if not user_files:
logger.warning(f"No session data found for user {username}")
return None
latest_file = sorted(user_files, reverse=True)[0]
file_path = hf_hub_download(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space", filename=latest_file)
with open(file_path, 'r') as f:
data = json.load(f)
logger.info(f"Session data loaded for user {username} from Hugging Face Data Space")
return data
except Exception as e:
logger.exception(f"Error loading session data for user {username}: {e}")
return None
def load_samples():
common_samples = []
categories = ["TP", "TN", "FP", "FN"]
for category in categories:
files = set(os.listdir(f'htmls_NO_XAI_mod/{category}'))
for method in ["Dater", "Chain-of-Table", "Plan-of-SQLs"]:
method_dir = VISUALIZATION_DIRS[method]
files &= set(os.listdir(f'{method_dir}/{category}'))
for file in files:
common_samples.append({'category': category, 'file': file})
logger.info(f"Found {len(common_samples)} common samples across all methods")
return common_samples
def select_balanced_samples(samples):
try:
if len(samples) < 10:
logger.warning(f"Not enough common samples. Only {len(samples)} available.")
return samples
selected_samples = random.sample(samples, 10)
logger.info(f"Selected 10 unique samples")
return selected_samples
except Exception as e:
logger.exception("Error selecting balanced samples")
return []
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
username = request.form.get('username')
seed = request.form.get('seed')
method = request.form.get('method')
if not username or not seed or not method:
return "Please fill in all fields and select a method.", 400
try:
seed = int(seed)
random.seed(seed)
all_samples = load_samples()
selected_samples = select_balanced_samples(all_samples)
if len(selected_samples) == 0:
return "No common samples were found", 500
session_data = {
'username': username,
'seed': seed,
'method': method,
'selected_samples': selected_samples,
'current_index': 0,
'responses': [],
'start_time': datetime.now().isoformat()
}
save_session_data(username, session_data)
return redirect(url_for('experiment', username=username))
except Exception as e:
logger.exception(f"Error in index route: {e}")
return "An error occurred", 500
return render_template('index.html')
@app.route('/experiment/<username>', methods=['GET', 'POST'])
def experiment(username):
try:
session_data = load_session_data(username)
if not session_data:
return redirect(url_for('index'))
selected_samples = session_data['selected_samples']
method = session_data['method']
current_index = session_data['current_index']
if current_index >= len(selected_samples):
return redirect(url_for('completed', username=username))
sample = selected_samples[current_index]
visualization_dir = VISUALIZATION_DIRS[method]
visualization_path = f"{visualization_dir}/{sample['category']}/{sample['file']}"
statement = """
Based on the explanation provided, what do you think the AI model will predict?
Will it predict the statement as TRUE or FALSE?
"""
return render_template('experiment.html',
sample_id=current_index,
statement=statement,
visualization=url_for('send_visualization', filename=visualization_path),
username=username,
method=method)
except Exception as e:
logger.exception(f"An error occurred in the experiment route: {e}")
return "An error occurred", 500
@app.route('/feedback', methods=['POST'])
def feedback():
try:
username = request.form['username']
prediction = request.form['prediction']
session_data = load_session_data(username)
if not session_data:
logger.error(f"No session data found for user: {username}")
return redirect(url_for('index'))
session_data['responses'].append({
'sample_id': session_data['current_index'],
'user_prediction': prediction
})
session_data['current_index'] += 1
save_session_data(username, session_data)
logger.info(f"Prediction saved for user {username}, sample {session_data['current_index'] - 1}")
if session_data['current_index'] >= len(session_data['selected_samples']):
return redirect(url_for('completed', username=username))
return redirect(url_for('experiment', username=username))
except Exception as e:
logger.exception(f"Error in feedback route: {e}")
return "An error occurred", 500
@app.route('/completed/<username>')
def completed(username):
try:
session_data = load_session_data(username)
if not session_data:
logger.error(f"No session data found for user: {username}")
return redirect(url_for('index'))
session_data['end_time'] = datetime.now().isoformat()
responses = session_data['responses']
method = session_data['method']
if method == "Chain-of-Table":
json_file = 'Tabular_LLMs_human_study_vis_6_COT.json'
elif method == "Plan-of-SQLs":
json_file = 'Tabular_LLMs_human_study_vis_6_POS.json'
elif method == "Dater":
json_file = 'Tabular_LLMs_human_study_vis_6_DATER.json'
elif method == "No-XAI":
json_file = 'Tabular_LLMs_human_study_vis_6_NO_XAI.json'
else:
return "Invalid method", 400
with open(json_file, 'r') as f:
ground_truth = json.load(f)
correct_predictions = 0
true_predictions = 0
false_predictions = 0
for response in responses:
sample_id = response['sample_id']
user_prediction = response['user_prediction']
visualization_file = session_data['selected_samples'][sample_id]['file']
index = visualization_file.split('-')[1].split('.')[0]
ground_truth_key = f"{method.upper().replace('-', '_')}_test-{index}.html"
if ground_truth_key in ground_truth:
model_prediction = ground_truth[ground_truth_key]['answer'].upper()
if user_prediction.upper() == model_prediction:
correct_predictions += 1
if user_prediction.upper() == "TRUE":
true_predictions += 1
elif user_prediction.upper() == "FALSE":
false_predictions += 1
else:
logger.warning(f"Missing key in ground truth: {ground_truth_key}")
accuracy = (correct_predictions / len(responses)) * 100 if responses else 0
accuracy = round(accuracy, 2)
true_percentage = (true_predictions / len(responses)) * 100 if len(responses) else 0
false_percentage = (false_predictions / len(responses)) * 100 if len(responses) else 0
true_percentage = round(true_percentage, 2)
false_percentage = round(false_percentage, 2)
session_data['accuracy'] = accuracy
session_data['true_percentage'] = true_percentage
session_data['false_percentage'] = false_percentage
save_session_data(username, session_data)
return render_template('completed.html',
accuracy=accuracy,
true_percentage=true_percentage,
false_percentage=false_percentage)
except Exception as e:
logger.exception(f"An error occurred in the completed route: {e}")
return "An error occurred", 500
@app.route('/visualizations/<path:filename>')
def send_visualization(filename):
logger.info(f"Attempting to serve file: {filename}")
base_dir = os.getcwd()
file_path = os.path.normpath(os.path.join(base_dir, filename))
if not file_path.startswith(base_dir):
return "Access denied", 403
if not os.path.exists(file_path):
return "File not found", 404
directory = os.path.dirname(file_path)
file_name = os.path.basename(file_path)
logger.info(f"Serving file from directory: {directory}, filename: {file_name}")
return send_from_directory(directory, file_name)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)