File size: 11,270 Bytes
5768e8b 0dc341f 24cbc9a eb2147a 0dc341f eb2147a 0dc341f eb2147a 8873a5c 65f3385 0dc341f eb2147a 436586a 83152ea 436586a eb2147a 436586a 83152ea eb2147a 591d3f0 eb2147a 436586a eb2147a 436586a 83152ea eb2147a 0dc341f eb2147a 8873a5c eb2147a 0dc341f eb2147a 0dc341f eb2147a 0dc341f eb2147a 0dc341f da1da84 eb2147a 83152ea eb2147a 83152ea eb2147a 83152ea 0dc341f eb2147a 83152ea 0dc341f 83152ea 48b2398 83152ea 0dc341f eb2147a 5d0030d 51ed47e 4ea55c3 4faaa69 4ea55c3 d72e943 4020dbd 83152ea 4020dbd 5d0030d eb2147a 0dc341f b05a860 0dc341f 4faaa69 0dc341f 83152ea 0dc341f 83152ea 4faaa69 0dc341f 83152ea 4faaa69 24cbc9a 83152ea 0dc341f 83152ea 0dc341f 83152ea eb2147a 83152ea 6103c97 9ff73e7 0dc341f 4faaa69 0dc341f 4faaa69 eb2147a 0dc341f eb2147a 0dc341f 4faaa69 0dc341f 4faaa69 0dc341f 4faaa69 0dc341f 4faaa69 0dc341f 4faaa69 0dc341f 4faaa69 0dc341f eb2147a 0dc341f 4faaa69 0dc341f 4020dbd 0dc341f fafbcc3 38fa440 fafbcc3 506c033 b314c6f 506c033 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session
import json
import random
import os
import string
import logging
from datetime import datetime
from huggingface_hub import login, HfApi, hf_hub_download
# Set up logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
])
logger = logging.getLogger(__name__)
# Use the Hugging Face token from environment variables
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
else:
logger.error("HF_TOKEN not found in environment variables")
app = Flask(__name__)
app.config['SECRET_KEY'] = 'supersecretkey' # Change this to a random secret key
# Directories for visualizations
VISUALIZATION_DIRS = {
"No-XAI": "htmls_NO_XAI_mod",
"Dater": "htmls_DATER_mod",
"Chain-of-Table": "htmls_COT_mod",
"Plan-of-SQLs": "htmls_POS_mod2"
}
METHODS = ["No-XAI", "Dater", "Chain-of-Table", "Plan-of-SQLs"]
def save_session_data(username, data):
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f'{username}_{timestamp}_session.json'
json_data = json.dumps(data, indent=4)
temp_file_path = f"/tmp/{file_name}"
with open(temp_file_path, 'w') as f:
f.write(json_data)
api = HfApi()
api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=f"session_data_foward_simulation/{file_name}",
repo_id="luulinh90s/Tabular-LLM-Study-Data",
repo_type="space",
)
os.remove(temp_file_path)
logger.info(f"Session data saved for user {username} in Hugging Face Data Space")
except Exception as e:
logger.exception(f"Error saving session data for user {username}: {e}")
def load_session_data(username):
try:
api = HfApi()
files = api.list_repo_files(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space")
user_files = [f for f in files if f.startswith(f'session_data_foward_simulation/{username}_') and f.endswith('_session.json')]
if not user_files:
logger.warning(f"No session data found for user {username}")
return None
latest_file = sorted(user_files, reverse=True)[0]
file_path = hf_hub_download(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space", filename=latest_file)
with open(file_path, 'r') as f:
data = json.load(f)
logger.info(f"Session data loaded for user {username} from Hugging Face Data Space")
return data
except Exception as e:
logger.exception(f"Error loading session data for user {username}: {e}")
return None
def load_samples():
common_samples = []
categories = ["TP", "TN", "FP", "FN"]
for category in categories:
files = set(os.listdir(f'htmls_NO_XAI_mod/{category}'))
for method in ["Dater", "Chain-of-Table", "Plan-of-SQLs"]:
method_dir = VISUALIZATION_DIRS[method]
files &= set(os.listdir(f'{method_dir}/{category}'))
for file in files:
common_samples.append({'category': category, 'file': file})
logger.info(f"Found {len(common_samples)} common samples across all methods")
return common_samples
def select_balanced_samples(samples):
try:
if len(samples) < 10:
logger.warning(f"Not enough common samples. Only {len(samples)} available.")
return samples
selected_samples = random.sample(samples, 10)
logger.info(f"Selected 10 unique samples")
return selected_samples
except Exception as e:
logger.exception("Error selecting balanced samples")
return []
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
username = request.form.get('username')
seed = request.form.get('seed')
method = request.form.get('method')
if not username or not seed or not method:
return "Please fill in all fields and select a method.", 400
try:
seed = int(seed)
random.seed(seed)
all_samples = load_samples()
selected_samples = select_balanced_samples(all_samples)
if len(selected_samples) == 0:
return "No common samples were found", 500
session_data = {
'username': username,
'seed': seed,
'method': method,
'selected_samples': selected_samples,
'current_index': 0,
'responses': [],
'start_time': datetime.now().isoformat()
}
save_session_data(username, session_data)
return redirect(url_for('experiment', username=username))
except Exception as e:
logger.exception(f"Error in index route: {e}")
return "An error occurred", 500
return render_template('index.html')
@app.route('/experiment/<username>', methods=['GET', 'POST'])
def experiment(username):
try:
session_data = load_session_data(username)
if not session_data:
return redirect(url_for('index'))
selected_samples = session_data['selected_samples']
method = session_data['method']
current_index = session_data['current_index']
if current_index >= len(selected_samples):
return redirect(url_for('completed', username=username))
sample = selected_samples[current_index]
visualization_dir = VISUALIZATION_DIRS[method]
visualization_path = f"{visualization_dir}/{sample['category']}/{sample['file']}"
statement = """
Based on the explanation provided, what do you think the AI model will predict?
Will it predict the statement as TRUE or FALSE?
"""
return render_template('experiment.html',
sample_id=current_index,
statement=statement,
visualization=url_for('send_visualization', filename=visualization_path),
username=username,
method=method)
except Exception as e:
logger.exception(f"An error occurred in the experiment route: {e}")
return "An error occurred", 500
@app.route('/feedback', methods=['POST'])
def feedback():
try:
username = request.form['username']
prediction = request.form['prediction']
session_data = load_session_data(username)
if not session_data:
logger.error(f"No session data found for user: {username}")
return redirect(url_for('index'))
session_data['responses'].append({
'sample_id': session_data['current_index'],
'user_prediction': prediction
})
session_data['current_index'] += 1
save_session_data(username, session_data)
logger.info(f"Prediction saved for user {username}, sample {session_data['current_index'] - 1}")
if session_data['current_index'] >= len(session_data['selected_samples']):
return redirect(url_for('completed', username=username))
return redirect(url_for('experiment', username=username))
except Exception as e:
logger.exception(f"Error in feedback route: {e}")
return "An error occurred", 500
@app.route('/completed/<username>')
def completed(username):
try:
session_data = load_session_data(username)
if not session_data:
logger.error(f"No session data found for user: {username}")
return redirect(url_for('index'))
session_data['end_time'] = datetime.now().isoformat()
responses = session_data['responses']
method = session_data['method']
if method == "Chain-of-Table":
json_file = 'Tabular_LLMs_human_study_vis_6_COT.json'
elif method == "Plan-of-SQLs":
json_file = 'Tabular_LLMs_human_study_vis_6_POS.json'
elif method == "Dater":
json_file = 'Tabular_LLMs_human_study_vis_6_DATER.json'
elif method == "No-XAI":
json_file = 'Tabular_LLMs_human_study_vis_6_NO_XAI.json'
else:
return "Invalid method", 400
with open(json_file, 'r') as f:
ground_truth = json.load(f)
correct_predictions = 0
true_predictions = 0
false_predictions = 0
for response in responses:
sample_id = response['sample_id']
user_prediction = response['user_prediction']
visualization_file = session_data['selected_samples'][sample_id]['file']
index = visualization_file.split('-')[1].split('.')[0]
ground_truth_key = f"{method.upper().replace('-', '_')}_test-{index}.html"
if ground_truth_key in ground_truth:
model_prediction = ground_truth[ground_truth_key]['answer'].upper()
if user_prediction.upper() == model_prediction:
correct_predictions += 1
if user_prediction.upper() == "TRUE":
true_predictions += 1
elif user_prediction.upper() == "FALSE":
false_predictions += 1
else:
logger.warning(f"Missing key in ground truth: {ground_truth_key}")
accuracy = (correct_predictions / len(responses)) * 100 if responses else 0
accuracy = round(accuracy, 2)
true_percentage = (true_predictions / len(responses)) * 100 if len(responses) else 0
false_percentage = (false_predictions / len(responses)) * 100 if len(responses) else 0
true_percentage = round(true_percentage, 2)
false_percentage = round(false_percentage, 2)
session_data['accuracy'] = accuracy
session_data['true_percentage'] = true_percentage
session_data['false_percentage'] = false_percentage
save_session_data(username, session_data)
return render_template('completed.html',
accuracy=accuracy,
true_percentage=true_percentage,
false_percentage=false_percentage)
except Exception as e:
logger.exception(f"An error occurred in the completed route: {e}")
return "An error occurred", 500
@app.route('/visualizations/<path:filename>')
def send_visualization(filename):
logger.info(f"Attempting to serve file: {filename}")
base_dir = os.getcwd()
file_path = os.path.normpath(os.path.join(base_dir, filename))
if not file_path.startswith(base_dir):
return "Access denied", 403
if not os.path.exists(file_path):
return "File not found", 404
directory = os.path.dirname(file_path)
file_name = os.path.basename(file_path)
logger.info(f"Serving file from directory: {directory}, filename: {file_name}")
return send_from_directory(directory, file_name)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True) |