File size: 11,270 Bytes
5768e8b
0dc341f
 
 
 
 
24cbc9a
eb2147a
0dc341f
 
 
 
 
 
 
 
 
 
eb2147a
 
 
 
 
 
 
0dc341f
 
 
 
eb2147a
8873a5c
 
 
65f3385
0dc341f
 
eb2147a
436586a
83152ea
436586a
eb2147a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436586a
 
 
83152ea
 
eb2147a
 
591d3f0
eb2147a
 
 
 
 
436586a
 
eb2147a
436586a
 
 
83152ea
 
eb2147a
 
 
0dc341f
eb2147a
8873a5c
eb2147a
 
 
 
 
 
 
 
 
0dc341f
 
 
eb2147a
 
 
 
 
 
 
0dc341f
 
 
 
 
 
 
 
 
eb2147a
 
 
0dc341f
 
 
eb2147a
0dc341f
da1da84
eb2147a
83152ea
 
eb2147a
83152ea
eb2147a
 
 
 
83152ea
 
 
0dc341f
 
 
 
eb2147a
83152ea
 
0dc341f
83152ea
 
48b2398
 
83152ea
 
 
 
 
 
0dc341f
eb2147a
5d0030d
 
51ed47e
4ea55c3
4faaa69
 
4ea55c3
d72e943
4020dbd
83152ea
4020dbd
5d0030d
eb2147a
 
0dc341f
 
 
 
b05a860
0dc341f
 
 
 
4faaa69
0dc341f
83152ea
 
 
 
0dc341f
83152ea
 
4faaa69
0dc341f
 
83152ea
 
4faaa69
24cbc9a
83152ea
 
 
 
0dc341f
 
 
 
83152ea
 
0dc341f
83152ea
 
 
 
 
eb2147a
83152ea
 
6103c97
9ff73e7
 
 
 
 
 
 
 
 
 
0dc341f
 
 
 
4faaa69
 
 
0dc341f
 
 
4faaa69
eb2147a
 
0dc341f
eb2147a
0dc341f
4faaa69
 
 
 
0dc341f
4faaa69
 
 
 
0dc341f
4faaa69
0dc341f
4faaa69
0dc341f
 
4faaa69
 
0dc341f
4faaa69
 
0dc341f
eb2147a
 
 
 
 
 
0dc341f
 
4faaa69
 
0dc341f
4020dbd
0dc341f
 
fafbcc3
 
 
38fa440
 
 
 
 
 
 
 
 
 
fafbcc3
 
506c033
b314c6f
506c033
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session
import json
import random
import os
import string
import logging
from datetime import datetime
from huggingface_hub import login, HfApi, hf_hub_download

# Set up logging
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    handlers=[
                        logging.FileHandler("app.log"),
                        logging.StreamHandler()
                    ])
logger = logging.getLogger(__name__)

# Use the Hugging Face token from environment variables
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
    login(token=hf_token)
else:
    logger.error("HF_TOKEN not found in environment variables")

app = Flask(__name__)
app.config['SECRET_KEY'] = 'supersecretkey'  # Change this to a random secret key

# Directories for visualizations
VISUALIZATION_DIRS = {
    "No-XAI": "htmls_NO_XAI_mod",
    "Dater": "htmls_DATER_mod",
    "Chain-of-Table": "htmls_COT_mod",
    "Plan-of-SQLs": "htmls_POS_mod2"
}

METHODS = ["No-XAI", "Dater", "Chain-of-Table", "Plan-of-SQLs"]

def save_session_data(username, data):
    try:
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        file_name = f'{username}_{timestamp}_session.json'
        json_data = json.dumps(data, indent=4)
        temp_file_path = f"/tmp/{file_name}"
        with open(temp_file_path, 'w') as f:
            f.write(json_data)
        api = HfApi()
        api.upload_file(
            path_or_fileobj=temp_file_path,
            path_in_repo=f"session_data_foward_simulation/{file_name}",
            repo_id="luulinh90s/Tabular-LLM-Study-Data",
            repo_type="space",
        )
        os.remove(temp_file_path)
        logger.info(f"Session data saved for user {username} in Hugging Face Data Space")
    except Exception as e:
        logger.exception(f"Error saving session data for user {username}: {e}")

def load_session_data(username):
    try:
        api = HfApi()
        files = api.list_repo_files(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space")
        user_files = [f for f in files if f.startswith(f'session_data_foward_simulation/{username}_') and f.endswith('_session.json')]
        if not user_files:
            logger.warning(f"No session data found for user {username}")
            return None
        latest_file = sorted(user_files, reverse=True)[0]
        file_path = hf_hub_download(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space", filename=latest_file)
        with open(file_path, 'r') as f:
            data = json.load(f)
        logger.info(f"Session data loaded for user {username} from Hugging Face Data Space")
        return data
    except Exception as e:
        logger.exception(f"Error loading session data for user {username}: {e}")
        return None

def load_samples():
    common_samples = []
    categories = ["TP", "TN", "FP", "FN"]

    for category in categories:
        files = set(os.listdir(f'htmls_NO_XAI_mod/{category}'))
        for method in ["Dater", "Chain-of-Table", "Plan-of-SQLs"]:
            method_dir = VISUALIZATION_DIRS[method]
            files &= set(os.listdir(f'{method_dir}/{category}'))

        for file in files:
            common_samples.append({'category': category, 'file': file})

    logger.info(f"Found {len(common_samples)} common samples across all methods")
    return common_samples

def select_balanced_samples(samples):
    try:
        if len(samples) < 10:
            logger.warning(f"Not enough common samples. Only {len(samples)} available.")
            return samples

        selected_samples = random.sample(samples, 10)
        logger.info(f"Selected 10 unique samples")
        return selected_samples
    except Exception as e:
        logger.exception("Error selecting balanced samples")
        return []

@app.route('/', methods=['GET', 'POST'])
def index():
    if request.method == 'POST':
        username = request.form.get('username')
        seed = request.form.get('seed')
        method = request.form.get('method')
        if not username or not seed or not method:
            return "Please fill in all fields and select a method.", 400
        try:
            seed = int(seed)
            random.seed(seed)
            all_samples = load_samples()
            selected_samples = select_balanced_samples(all_samples)
            if len(selected_samples) == 0:
                return "No common samples were found", 500
            session_data = {
                'username': username,
                'seed': seed,
                'method': method,
                'selected_samples': selected_samples,
                'current_index': 0,
                'responses': [],
                'start_time': datetime.now().isoformat()
            }
            save_session_data(username, session_data)
            return redirect(url_for('experiment', username=username))
        except Exception as e:
            logger.exception(f"Error in index route: {e}")
            return "An error occurred", 500
    return render_template('index.html')

@app.route('/experiment/<username>', methods=['GET', 'POST'])
def experiment(username):
    try:
        session_data = load_session_data(username)
        if not session_data:
            return redirect(url_for('index'))

        selected_samples = session_data['selected_samples']
        method = session_data['method']
        current_index = session_data['current_index']

        if current_index >= len(selected_samples):
            return redirect(url_for('completed', username=username))

        sample = selected_samples[current_index]
        visualization_dir = VISUALIZATION_DIRS[method]
        visualization_path = f"{visualization_dir}/{sample['category']}/{sample['file']}"

        statement = """
Based on the explanation provided, what do you think the AI model will predict?
Will it predict the statement as TRUE or FALSE?
        """

        return render_template('experiment.html',
                               sample_id=current_index,
                               statement=statement,
                               visualization=url_for('send_visualization', filename=visualization_path),
                               username=username,
                               method=method)
    except Exception as e:
        logger.exception(f"An error occurred in the experiment route: {e}")
        return "An error occurred", 500


@app.route('/feedback', methods=['POST'])
def feedback():
    try:
        username = request.form['username']
        prediction = request.form['prediction']

        session_data = load_session_data(username)
        if not session_data:
            logger.error(f"No session data found for user: {username}")
            return redirect(url_for('index'))

        session_data['responses'].append({
            'sample_id': session_data['current_index'],
            'user_prediction': prediction
        })

        session_data['current_index'] += 1
        save_session_data(username, session_data)
        logger.info(f"Prediction saved for user {username}, sample {session_data['current_index'] - 1}")

        if session_data['current_index'] >= len(session_data['selected_samples']):
            return redirect(url_for('completed', username=username))

        return redirect(url_for('experiment', username=username))
    except Exception as e:
        logger.exception(f"Error in feedback route: {e}")
        return "An error occurred", 500

@app.route('/completed/<username>')
def completed(username):
    try:
        session_data = load_session_data(username)
        if not session_data:
            logger.error(f"No session data found for user: {username}")
            return redirect(url_for('index'))

        session_data['end_time'] = datetime.now().isoformat()
        responses = session_data['responses']
        method = session_data['method']

        if method == "Chain-of-Table":
            json_file = 'Tabular_LLMs_human_study_vis_6_COT.json'
        elif method == "Plan-of-SQLs":
            json_file = 'Tabular_LLMs_human_study_vis_6_POS.json'
        elif method == "Dater":
            json_file = 'Tabular_LLMs_human_study_vis_6_DATER.json'
        elif method == "No-XAI":
            json_file = 'Tabular_LLMs_human_study_vis_6_NO_XAI.json'
        else:
            return "Invalid method", 400

        with open(json_file, 'r') as f:
            ground_truth = json.load(f)

        correct_predictions = 0
        true_predictions = 0
        false_predictions = 0

        for response in responses:
            sample_id = response['sample_id']
            user_prediction = response['user_prediction']
            visualization_file = session_data['selected_samples'][sample_id]['file']
            index = visualization_file.split('-')[1].split('.')[0]

            ground_truth_key = f"{method.upper().replace('-', '_')}_test-{index}.html"

            if ground_truth_key in ground_truth:
                model_prediction = ground_truth[ground_truth_key]['answer'].upper()
                if user_prediction.upper() == model_prediction:
                    correct_predictions += 1

                if user_prediction.upper() == "TRUE":
                    true_predictions += 1
                elif user_prediction.upper() == "FALSE":
                    false_predictions += 1
            else:
                logger.warning(f"Missing key in ground truth: {ground_truth_key}")

        accuracy = (correct_predictions / len(responses)) * 100 if responses else 0
        accuracy = round(accuracy, 2)

        true_percentage = (true_predictions / len(responses)) * 100 if len(responses) else 0
        false_percentage = (false_predictions / len(responses)) * 100 if len(responses) else 0

        true_percentage = round(true_percentage, 2)
        false_percentage = round(false_percentage, 2)

        session_data['accuracy'] = accuracy
        session_data['true_percentage'] = true_percentage
        session_data['false_percentage'] = false_percentage

        save_session_data(username, session_data)

        return render_template('completed.html',
                               accuracy=accuracy,
                               true_percentage=true_percentage,
                               false_percentage=false_percentage)
    except Exception as e:
        logger.exception(f"An error occurred in the completed route: {e}")
        return "An error occurred", 500

@app.route('/visualizations/<path:filename>')
def send_visualization(filename):
    logger.info(f"Attempting to serve file: {filename}")
    base_dir = os.getcwd()
    file_path = os.path.normpath(os.path.join(base_dir, filename))
    if not file_path.startswith(base_dir):
        return "Access denied", 403

    if not os.path.exists(file_path):
        return "File not found", 404

    directory = os.path.dirname(file_path)
    file_name = os.path.basename(file_path)
    logger.info(f"Serving file from directory: {directory}, filename: {file_name}")
    return send_from_directory(directory, file_name)

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)