Spaces:
Running
on
Zero
Running
on
Zero
# XoFTR: Cross-modal Feature Matching Transformer | |
### [Paper (arXiv)](https://arxiv.org/pdf/2404.09692) | [Paper (CVF)](https://openaccess.thecvf.com/content/CVPR2024W/IMW/papers/Tuzcuoglu_XoFTR_Cross-modal_Feature_Matching_Transformer_CVPRW_2024_paper.pdf) | |
<br/> | |
This is Pytorch implementation of XoFTR: Cross-modal Feature Matching Transformer [CVPR 2024 Image Matching Workshop](https://image-matching-workshop.github.io/) paper. | |
XoFTR is a cross-modal cross-view method for local feature matching between thermal infrared (TIR) and visible images. | |
<!-- ![teaser](assets/figures/teaser.png) --> | |
<p align="center"> | |
<img src="assets/figures/teaser.png" alt="teaser" width="500"/> | |
</p> | |
## Colab demo | |
To run XoFTR with custom image pairs without configuring your own GPU environment, you can use the Colab demo: | |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1T495vybejujZjJlPY-sHm8YwV5Ss86AM?usp=sharing) | |
## Installation | |
```shell | |
conda env create -f environment.yaml | |
conda activate xoftr | |
``` | |
Download links for | |
- [Pretrained models weights](https://drive.google.com/drive/folders/1RAI243OHuyZ4Weo1NiTy280bCE_82s4q?usp=drive_link): Two versions available, trained at 640 and 840 resolutions. | |
- [METU-VisTIR dataset](https://drive.google.com/file/d/1Sj_vxj-GXvDQIMSg-ZUJR0vHBLIeDrLg/view?usp=sharing) | |
## METU-VisTIR Dataset | |
<!-- ![dataset](assets/figures/dataset.png) --> | |
<p align="center"> | |
<img src="assets/figures/dataset.png" alt="dataset" width="600"/> | |
</p> | |
This dataset includes thermal and visible images captured across six diverse scenes with ground-truth camera poses. Four of the scenes encompass images captured under both cloudy and sunny conditions, while the remaining two scenes exclusively feature cloudy conditions. Since the cameras are auto-focus, there may be result in slight imperfections in the ground truth camera parameters. For more information about the dataset, please refer to our [paper](https://arxiv.org/pdf/2404.09692). | |
**License of the dataset:** | |
The METU-VisTIR dataset is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). | |
### Data format | |
The dataset is organized into folders according to scenarios. The organization format is as follows: | |
``` | |
METU-VisTIR/ | |
βββ index/ | |
β βββ scene_info_test/ | |
β β βββ cloudy_cloudy_scene_1.npz # scene info with test pairs | |
β β βββ ... | |
β βββ scene_info_val/ | |
β β βββ cloudy_cloudy_scene_1.npz # scene info with val pairs | |
β β βββ ... | |
β βββ val_test_list/ | |
β βββ test_list.txt # test scenes list | |
β βββ val_list.txt # val scenes list | |
βββ cloudy/ # cloudy scenes | |
β βββ scene_1/ | |
β β βββ thermal/ | |
β β β βββ images/ # thermal images | |
β β βββ visible/ | |
β β βββ images/ # visible images | |
β βββ ... | |
βββ sunny/ # sunny scenes | |
βββ ... | |
``` | |
cloudy_cloudy_scene_\*.npz and cloudy_sunny_scene_\*.npz files contain GT camera poses and image pairs | |
## Runing XoFTR | |
### Demo to match image pairs with XoFTR | |
A <span style="color:red">demo notebook</span> for XoFTR on a single pair of images is given in [notebooks/xoftr_demo.ipynb](notebooks/xoftr_demo.ipynb). | |
### Reproduce the testing results for relative pose estimation | |
You need to download METU-VisTIR dataset. After downloading, unzip the required files. Then, symlinks need to be created for the `data` folder. | |
```shell | |
unzip downloaded-file.zip | |
# set up symlinks | |
ln -s /path/to/METU_VisTIR/ /path/to/XoFTR/data/ | |
``` | |
```shell | |
conda activate xoftr | |
python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt | |
# with visualization | |
python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt --save_figs | |
``` | |
The results and figures are saved to `results_relative_pose/`. | |
<br/> | |
## Training | |
See [Training XoFTR](./docs/TRAINING.md) for more details. | |
## Citation | |
If you find this code useful for your research, please use the following BibTeX entry. | |
```bibtex | |
@inproceedings{tuzcuouglu2024xoftr, | |
title={XoFTR: Cross-modal Feature Matching Transformer}, | |
author={Tuzcuo{\u{g}}lu, {\"O}nder and K{\"o}ksal, Aybora and Sofu, Bu{\u{g}}ra and Kalkan, Sinan and Alatan, A Aydin}, | |
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
pages={4275--4286}, | |
year={2024} | |
} | |
``` | |
## Acknowledgement | |
This code is derived from [LoFTR](https://github.com/zju3dv/LoFTR). We are grateful to the authors for their contribution of the source code. | |