File size: 11,487 Bytes
aaf47df
 
20e59fb
91bf496
 
 
 
 
 
 
d0763c6
26dad3e
91bf496
 
 
 
20e59fb
e66bce9
aaf47df
91bf496
 
 
 
 
 
 
 
 
 
 
 
 
aaf47df
 
 
 
20e59fb
3a0a966
aaf47df
20e59fb
 
 
 
 
 
1ee33b8
20e59fb
 
 
 
 
 
 
aaf47df
 
1ee33b8
aaf47df
 
 
 
 
 
 
 
20e59fb
3a0a966
aaf47df
 
 
 
 
 
 
 
 
 
 
b4ee178
 
20e59fb
b4ee178
aaf47df
 
 
 
 
 
91bf496
 
 
 
 
 
 
cf11f5e
91bf496
 
 
 
26dad3e
 
91bf496
26dad3e
91bf496
 
26dad3e
 
 
 
91bf496
 
26dad3e
 
 
 
 
 
91bf496
26dad3e
 
 
 
d0eeb69
 
26dad3e
 
d0eeb69
 
26dad3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91bf496
 
26dad3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91bf496
26dad3e
91bf496
 
26dad3e
91bf496
 
26dad3e
 
 
 
 
 
91bf496
 
26dad3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91bf496
 
26dad3e
91bf496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dad3e
d0eeb69
26dad3e
aaf47df
 
 
38c818a
 
 
d0eeb69
91bf496
d0eeb69
 
 
 
26dad3e
d0eeb69
 
 
91bf496
38c818a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0eeb69
38c818a
 
d0eeb69
 
aaf47df
 
 
 
 
5002527
02bfdfc
aaf47df
 
26dad3e
 
aaf47df
 
 
d0763c6
 
565f2f2
26dad3e
d0763c6
aaf47df
 
 
 
 
91bf496
aaf47df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gradio as gr
import requests
from cachetools import cached, TTLCache
from bs4 import BeautifulSoup
from httpx import Client
import json
from pathlib import Path
from huggingface_hub import CommitScheduler
from dotenv import load_dotenv
import os
from functools import lru_cache
from typing import Tuple

load_dotenv()

HF_TOKEN = os.getenv("HF_TOKEN")

CACHE_TIME = 60 * 60 * 6  # 6 hours

client = Client()

REPO_ID = "librarian-bots/paper-recommendations-v2"

scheduler = CommitScheduler(
    repo_id=REPO_ID,
    repo_type="dataset",
    folder_path="comments",
    path_in_repo="data",
    every=5,
    token=HF_TOKEN,
)


def parse_arxiv_id_from_paper_url(url):
    return url.split("/")[-1]


@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_recommendations_from_semantic_scholar(semantic_scholar_id: str):
    try:
        r = requests.post(
            "https://api.semanticscholar.org/recommendations/v1/papers/",
            json={
                "positivePaperIds": [semantic_scholar_id],
            },
            params={"fields": "externalIds,title,year", "limit": 14},
        )
        return r.json()["recommendedPapers"]
    except KeyError as e:
        raise gr.Error(
            "Error getting recommendations, if this is a new paper it may not yet have"
            " been indexed by Semantic Scholar."
        ) from e


def filter_recommendations(recommendations, max_paper_count=7):
    # include only arxiv papers
    arxiv_paper = [
        r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None
    ]
    if len(arxiv_paper) > max_paper_count:
        arxiv_paper = arxiv_paper[:max_paper_count]
    return arxiv_paper


@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_paper_title_from_arxiv_id(arxiv_id):
    try:
        return requests.get(f"https://huggingface.co/api/papers/{arxiv_id}").json()[
            "title"
        ]
    except Exception as e:
        print(f"Error getting paper title for {arxiv_id}: {e}")
        raise gr.Error("Error getting paper title for {arxiv_id}: {e}") from e


def format_recommendation_into_markdown(arxiv_id, recommendations):
    # title = get_paper_title_from_arxiv_id(arxiv_id)
    # url = f"https://huggingface.co/papers/{arxiv_id}"
    # comment = f"Recommended papers for [{title}]({url})\n\n"
    comment = "The following papers were recommended by the Semantic Scholar API \n\n"
    for r in recommendations:
        hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
        comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
    return comment


def format_comment(result: str):
    result = (
        "This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\n"
        + result
    )
    result += "\n\n Please give a thumbs up to this comment if you found it helpful!"
    result += "\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space"
    result += "\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`"
    return result


def post_comment(
    paper_url: str, comment: str, comment_id: str | None = None, token: str = HF_TOKEN
) -> Tuple[bool, str]:
    """
    Post a comment on a paper or a reply to a comment using the Hugging Face API.

    Args:
        paper_url (str): The URL of the paper to post the comment on.
        comment (str): The text of the comment or reply to post.
        comment_id (str, optional): The ID of the comment to reply to. If provided, the function will post a reply to the specified comment. Defaults to None.
        token (str, optional): The authentication token to use for the API request. Defaults to HF_TOKEN.

    Returns:
        Tuple[bool, str]: A tuple containing two elements:
            - bool: True if the comment or reply was posted successfully, False otherwise.
            - str: The ID of the posted comment or reply if successful, an empty string otherwise.

    Raises:
        requests.exceptions.RequestException: If an error occurs while making the API request.
    """
    try:
        paper_id = paper_url.split("/")[-1]
        if comment_id:
            url = f"https://huggingface.co/api/papers/{paper_id}/comment/{comment_id}/reply"
            gr.Info(f"Replying to comment {comment_id}")
            print(f"Replying to comment {comment_id}")
        else:
            url = f"https://huggingface.co/api/papers/{paper_id}/comment"
            print(f"Posting comment for {paper_url}")
            gr.Info(f"Posting comment for {paper_url}")
        headers = {
            "Authorization": f"Bearer {token}",
            "Content-Type": "application/json",
        }
        comment_data = {"comment": comment}

        response = requests.post(url, json=comment_data, headers=headers)

        if response.status_code == 201:
            posted_comment_id = response.json().get("id", "")
            if comment_id:
                print(
                    f"Reply posted successfully to comment {comment_id} for {paper_url}. Reply ID: {posted_comment_id}"
                )
            else:
                print(
                    f"Comment posted successfully for {paper_url}. Comment ID: {posted_comment_id}"
                )
            return True, posted_comment_id
        else:
            print(
                f"Failed to post {'reply' if comment_id else 'comment'} for {paper_url}. Status code: {response.status_code}"
            )
            print(f"Response text: {response.text}")
            return False, ""

    except requests.exceptions.RequestException as e:
        print(
            f"Error posting {'reply' if comment_id else 'comment'} for {paper_url}: {e}"
        )
        return False, ""


# @lru_cache(maxsize=500)
# def is_comment_from_librarian_bot(html: str) -> bool:
#     """
#     Checks if the given HTML contains a comment from the librarian-bot.

#     Args:
#         html (str): The HTML content to check.

#     Returns:
#         bool: True if a comment from the librarian-bot is found, False otherwise.
#     """
#     soup = BeautifulSoup(html, "lxml")
#     librarian_bot_links = soup.find_all("a", string="librarian-bot")
#     return any(librarian_bot_links)


def check_if_lib_bot_comment_exists(paper_url: str) -> Tuple[bool, str]:
    """
    Check if a comment or reply from the librarian-bot exists for a given paper URL using the Hugging Face API.

    Args:
        paper_url (str): The URL of the paper to check for librarian-bot comments.

    Returns:
        Tuple[bool, str]: A tuple containing two elements:
            - bool: True if a comment or reply from the librarian-bot is found, False otherwise.
            - str: The ID of the comment if a librarian-bot comment is found, an empty string otherwise.

    Raises:
        Exception: If an error occurs while retrieving comments from the API.
    """
    try:
        paper_id = paper_url.split("/")[-1]
        url = f"https://huggingface.co/api/papers/{paper_id}/?field=comments"
        headers = {"Authorization": f"Bearer {HF_TOKEN}"}
        response = requests.get(url, headers=headers)

        if response.status_code == 200:
            paper_data = response.json()
            comments = paper_data.get("comments", [])
            for comment in comments:
                comment_author = comment.get("author", {}).get("name")
                if comment_author == "librarian-bot":
                    return True, comment.get("id")
                replies = comment.get("replies", [])
                for reply in replies:
                    reply_author = reply.get("author", {}).get("name")
                    if reply_author == "librarian-bot":
                        return True, comment.get("id")
        else:
            print(
                f"Failed to retrieve comments for {paper_url}. Status code: {response.status_code}"
            )

        return False, ""
    except Exception as e:
        print(f"Error checking if comment exists for {paper_url}: {e}")
        return True, ""  # default to not posting comment


def log_comments(paper_url: str, comment: str):
    """
    Logs comments for a given paper URL.

    Args:
        paper_url (str): The URL of the paper.
        comment (str): The comment to be logged.

    Returns:
        None
    """
    paper_id = paper_url.split("/")[-1]
    file_path = Path(f"comments/{paper_id}.json")
    if not file_path.exists():
        with scheduler.lock:
            with open(file_path, "w") as f:
                data = {"paper_url": paper_url, "comment": comment}
                json.dump(data, f)


def return_recommendations(
    url: str, comment_id: str | None, post_to_paper: bool = True
) -> str:
    arxiv_id = parse_arxiv_id_from_paper_url(url)
    recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}")
    filtered_recommendations = filter_recommendations(recommendations)
    formatted_recommendation = format_recommendation_into_markdown(
        arxiv_id, filtered_recommendations
    )  # Assign early

    if post_to_paper:
        comment = format_comment(formatted_recommendation)

        # Check if a librarian-bot comment already exists.
        existing_comments, existing_comment_id = check_if_lib_bot_comment_exists(url)
        if existing_comments:
            gr.Info(
                f"Librarian-bot already commented on this paper. Comment ID: {existing_comment_id}. No further action will be taken."
            )
        else:
            # If no existing librarian-bot comment, check if a specific comment_id is provided for replying.
            if comment_id:
                comment_status, posted_comment_id = post_comment(
                    url, comment, comment_id, token=HF_TOKEN
                )
                if comment_status:
                    log_comments(url, comment)
                    gr.Info(f"Posted reply to comment {posted_comment_id}")
            else:
                # If no comment_id is provided, post a new comment.
                comment_status, posted_comment_id = post_comment(
                    url, comment, token=HF_TOKEN
                )
                if comment_status:
                    log_comments(url, comment)
                    gr.Info(f"Posted new comment {posted_comment_id}")

            if not comment_status:
                gr.Info("Failed to post comment")

    return formatted_recommendation


title = "Semantic Scholar Paper Recommender"
description = (
    "Paste a link to a paper on Hugging Face Papers and get recommendations for similar"
    " papers from Semantic Scholar. **Note**: Some papers may not have recommendations"
    " yet if they are new or have not been indexed by Semantic Scholar."
)
examples = [
    ["https://huggingface.co/papers/2309.12307", None, False],
    ["https://huggingface.co/papers/2211.10086", None, False],
]
interface = gr.Interface(
    return_recommendations,
    [
        gr.Textbox(lines=1),
        gr.Textbox(None, lines=1, label="Comment ID (only for API)", visible=False),
        gr.Checkbox(False, label="Post recommendations to Paper page?"),
    ],
    gr.Markdown(),
    examples=examples,
    title=title,
    description=description,
)
interface.queue()
interface.launch()