File size: 11,487 Bytes
aaf47df 20e59fb 91bf496 d0763c6 26dad3e 91bf496 20e59fb e66bce9 aaf47df 91bf496 aaf47df 20e59fb 3a0a966 aaf47df 20e59fb 1ee33b8 20e59fb aaf47df 1ee33b8 aaf47df 20e59fb 3a0a966 aaf47df b4ee178 20e59fb b4ee178 aaf47df 91bf496 cf11f5e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e d0eeb69 26dad3e d0eeb69 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e 91bf496 26dad3e d0eeb69 26dad3e aaf47df 38c818a d0eeb69 91bf496 d0eeb69 26dad3e d0eeb69 91bf496 38c818a d0eeb69 38c818a d0eeb69 aaf47df 5002527 02bfdfc aaf47df 26dad3e aaf47df d0763c6 565f2f2 26dad3e d0763c6 aaf47df 91bf496 aaf47df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import gradio as gr
import requests
from cachetools import cached, TTLCache
from bs4 import BeautifulSoup
from httpx import Client
import json
from pathlib import Path
from huggingface_hub import CommitScheduler
from dotenv import load_dotenv
import os
from functools import lru_cache
from typing import Tuple
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_TIME = 60 * 60 * 6 # 6 hours
client = Client()
REPO_ID = "librarian-bots/paper-recommendations-v2"
scheduler = CommitScheduler(
repo_id=REPO_ID,
repo_type="dataset",
folder_path="comments",
path_in_repo="data",
every=5,
token=HF_TOKEN,
)
def parse_arxiv_id_from_paper_url(url):
return url.split("/")[-1]
@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_recommendations_from_semantic_scholar(semantic_scholar_id: str):
try:
r = requests.post(
"https://api.semanticscholar.org/recommendations/v1/papers/",
json={
"positivePaperIds": [semantic_scholar_id],
},
params={"fields": "externalIds,title,year", "limit": 14},
)
return r.json()["recommendedPapers"]
except KeyError as e:
raise gr.Error(
"Error getting recommendations, if this is a new paper it may not yet have"
" been indexed by Semantic Scholar."
) from e
def filter_recommendations(recommendations, max_paper_count=7):
# include only arxiv papers
arxiv_paper = [
r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None
]
if len(arxiv_paper) > max_paper_count:
arxiv_paper = arxiv_paper[:max_paper_count]
return arxiv_paper
@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_paper_title_from_arxiv_id(arxiv_id):
try:
return requests.get(f"https://huggingface.co/api/papers/{arxiv_id}").json()[
"title"
]
except Exception as e:
print(f"Error getting paper title for {arxiv_id}: {e}")
raise gr.Error("Error getting paper title for {arxiv_id}: {e}") from e
def format_recommendation_into_markdown(arxiv_id, recommendations):
# title = get_paper_title_from_arxiv_id(arxiv_id)
# url = f"https://huggingface.co/papers/{arxiv_id}"
# comment = f"Recommended papers for [{title}]({url})\n\n"
comment = "The following papers were recommended by the Semantic Scholar API \n\n"
for r in recommendations:
hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
return comment
def format_comment(result: str):
result = (
"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\n"
+ result
)
result += "\n\n Please give a thumbs up to this comment if you found it helpful!"
result += "\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space"
result += "\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`"
return result
def post_comment(
paper_url: str, comment: str, comment_id: str | None = None, token: str = HF_TOKEN
) -> Tuple[bool, str]:
"""
Post a comment on a paper or a reply to a comment using the Hugging Face API.
Args:
paper_url (str): The URL of the paper to post the comment on.
comment (str): The text of the comment or reply to post.
comment_id (str, optional): The ID of the comment to reply to. If provided, the function will post a reply to the specified comment. Defaults to None.
token (str, optional): The authentication token to use for the API request. Defaults to HF_TOKEN.
Returns:
Tuple[bool, str]: A tuple containing two elements:
- bool: True if the comment or reply was posted successfully, False otherwise.
- str: The ID of the posted comment or reply if successful, an empty string otherwise.
Raises:
requests.exceptions.RequestException: If an error occurs while making the API request.
"""
try:
paper_id = paper_url.split("/")[-1]
if comment_id:
url = f"https://huggingface.co/api/papers/{paper_id}/comment/{comment_id}/reply"
gr.Info(f"Replying to comment {comment_id}")
print(f"Replying to comment {comment_id}")
else:
url = f"https://huggingface.co/api/papers/{paper_id}/comment"
print(f"Posting comment for {paper_url}")
gr.Info(f"Posting comment for {paper_url}")
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
}
comment_data = {"comment": comment}
response = requests.post(url, json=comment_data, headers=headers)
if response.status_code == 201:
posted_comment_id = response.json().get("id", "")
if comment_id:
print(
f"Reply posted successfully to comment {comment_id} for {paper_url}. Reply ID: {posted_comment_id}"
)
else:
print(
f"Comment posted successfully for {paper_url}. Comment ID: {posted_comment_id}"
)
return True, posted_comment_id
else:
print(
f"Failed to post {'reply' if comment_id else 'comment'} for {paper_url}. Status code: {response.status_code}"
)
print(f"Response text: {response.text}")
return False, ""
except requests.exceptions.RequestException as e:
print(
f"Error posting {'reply' if comment_id else 'comment'} for {paper_url}: {e}"
)
return False, ""
# @lru_cache(maxsize=500)
# def is_comment_from_librarian_bot(html: str) -> bool:
# """
# Checks if the given HTML contains a comment from the librarian-bot.
# Args:
# html (str): The HTML content to check.
# Returns:
# bool: True if a comment from the librarian-bot is found, False otherwise.
# """
# soup = BeautifulSoup(html, "lxml")
# librarian_bot_links = soup.find_all("a", string="librarian-bot")
# return any(librarian_bot_links)
def check_if_lib_bot_comment_exists(paper_url: str) -> Tuple[bool, str]:
"""
Check if a comment or reply from the librarian-bot exists for a given paper URL using the Hugging Face API.
Args:
paper_url (str): The URL of the paper to check for librarian-bot comments.
Returns:
Tuple[bool, str]: A tuple containing two elements:
- bool: True if a comment or reply from the librarian-bot is found, False otherwise.
- str: The ID of the comment if a librarian-bot comment is found, an empty string otherwise.
Raises:
Exception: If an error occurs while retrieving comments from the API.
"""
try:
paper_id = paper_url.split("/")[-1]
url = f"https://huggingface.co/api/papers/{paper_id}/?field=comments"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
paper_data = response.json()
comments = paper_data.get("comments", [])
for comment in comments:
comment_author = comment.get("author", {}).get("name")
if comment_author == "librarian-bot":
return True, comment.get("id")
replies = comment.get("replies", [])
for reply in replies:
reply_author = reply.get("author", {}).get("name")
if reply_author == "librarian-bot":
return True, comment.get("id")
else:
print(
f"Failed to retrieve comments for {paper_url}. Status code: {response.status_code}"
)
return False, ""
except Exception as e:
print(f"Error checking if comment exists for {paper_url}: {e}")
return True, "" # default to not posting comment
def log_comments(paper_url: str, comment: str):
"""
Logs comments for a given paper URL.
Args:
paper_url (str): The URL of the paper.
comment (str): The comment to be logged.
Returns:
None
"""
paper_id = paper_url.split("/")[-1]
file_path = Path(f"comments/{paper_id}.json")
if not file_path.exists():
with scheduler.lock:
with open(file_path, "w") as f:
data = {"paper_url": paper_url, "comment": comment}
json.dump(data, f)
def return_recommendations(
url: str, comment_id: str | None, post_to_paper: bool = True
) -> str:
arxiv_id = parse_arxiv_id_from_paper_url(url)
recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}")
filtered_recommendations = filter_recommendations(recommendations)
formatted_recommendation = format_recommendation_into_markdown(
arxiv_id, filtered_recommendations
) # Assign early
if post_to_paper:
comment = format_comment(formatted_recommendation)
# Check if a librarian-bot comment already exists.
existing_comments, existing_comment_id = check_if_lib_bot_comment_exists(url)
if existing_comments:
gr.Info(
f"Librarian-bot already commented on this paper. Comment ID: {existing_comment_id}. No further action will be taken."
)
else:
# If no existing librarian-bot comment, check if a specific comment_id is provided for replying.
if comment_id:
comment_status, posted_comment_id = post_comment(
url, comment, comment_id, token=HF_TOKEN
)
if comment_status:
log_comments(url, comment)
gr.Info(f"Posted reply to comment {posted_comment_id}")
else:
# If no comment_id is provided, post a new comment.
comment_status, posted_comment_id = post_comment(
url, comment, token=HF_TOKEN
)
if comment_status:
log_comments(url, comment)
gr.Info(f"Posted new comment {posted_comment_id}")
if not comment_status:
gr.Info("Failed to post comment")
return formatted_recommendation
title = "Semantic Scholar Paper Recommender"
description = (
"Paste a link to a paper on Hugging Face Papers and get recommendations for similar"
" papers from Semantic Scholar. **Note**: Some papers may not have recommendations"
" yet if they are new or have not been indexed by Semantic Scholar."
)
examples = [
["https://huggingface.co/papers/2309.12307", None, False],
["https://huggingface.co/papers/2211.10086", None, False],
]
interface = gr.Interface(
return_recommendations,
[
gr.Textbox(lines=1),
gr.Textbox(None, lines=1, label="Comment ID (only for API)", visible=False),
gr.Checkbox(False, label="Post recommendations to Paper page?"),
],
gr.Markdown(),
examples=examples,
title=title,
description=description,
)
interface.queue()
interface.launch()
|