Commit
·
26dad3e
1
Parent(s):
3205980
refactor to use api
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from huggingface_hub import CommitScheduler
|
|
9 |
from dotenv import load_dotenv
|
10 |
import os
|
11 |
from functools import lru_cache
|
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
@@ -95,57 +96,127 @@ def format_comment(result: str):
|
|
95 |
return result
|
96 |
|
97 |
|
|
|
|
|
|
|
98 |
def post_comment(
|
99 |
-
paper_url: str, comment: str,
|
100 |
-
) -> bool:
|
101 |
-
if not base_url:
|
102 |
-
base_url = "https://huggingface.co"
|
103 |
-
paper_id = paper_url.split("/")[-1]
|
104 |
-
url = f"{base_url}/api/papers/{paper_id}/comment"
|
105 |
-
comment_data = {"comment": comment}
|
106 |
-
headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}
|
107 |
-
response = requests.post(url, json=comment_data, headers=headers)
|
108 |
-
if response.status_code == 201:
|
109 |
-
print(f"Comment posted successfully for {paper_url}!")
|
110 |
-
return True
|
111 |
-
else:
|
112 |
-
print(f"Failed to post comment! (Status Code: {response.status_code})")
|
113 |
-
print(response.text)
|
114 |
-
return False
|
115 |
-
|
116 |
-
|
117 |
-
@lru_cache(maxsize=500)
|
118 |
-
def is_comment_from_librarian_bot(html: str) -> bool:
|
119 |
"""
|
120 |
-
|
121 |
|
122 |
Args:
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
Returns:
|
126 |
-
bool:
|
|
|
|
|
|
|
|
|
|
|
127 |
"""
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
"""
|
135 |
-
|
136 |
|
137 |
Args:
|
138 |
-
paper_url (str): The URL of the paper.
|
139 |
|
140 |
Returns:
|
141 |
-
bool:
|
|
|
|
|
|
|
|
|
|
|
142 |
"""
|
143 |
try:
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
except Exception as e:
|
147 |
print(f"Error checking if comment exists for {paper_url}: {e}")
|
148 |
-
return True # default to not posting comment
|
149 |
|
150 |
|
151 |
def log_comments(paper_url: str, comment: str):
|
@@ -168,22 +239,34 @@ def log_comments(paper_url: str, comment: str):
|
|
168 |
json.dump(data, f)
|
169 |
|
170 |
|
171 |
-
def return_recommendations(
|
|
|
|
|
172 |
arxiv_id = parse_arxiv_id_from_paper_url(url)
|
173 |
recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}")
|
174 |
filtered_recommendations = filter_recommendations(recommendations)
|
175 |
if post_to_paper:
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
)
|
180 |
else:
|
181 |
comment = format_comment(
|
182 |
format_recommendation_into_markdown(arxiv_id, filtered_recommendations)
|
183 |
)
|
184 |
-
if
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
else:
|
188 |
gr.Info("Failed to post comment")
|
189 |
return format_recommendation_into_markdown(arxiv_id, filtered_recommendations)
|
@@ -196,14 +279,15 @@ description = (
|
|
196 |
" yet if they are new or have not been indexed by Semantic Scholar."
|
197 |
)
|
198 |
examples = [
|
199 |
-
["https://huggingface.co/papers/2309.12307", False],
|
200 |
-
["https://huggingface.co/papers/2211.10086", False],
|
201 |
]
|
202 |
interface = gr.Interface(
|
203 |
return_recommendations,
|
204 |
[
|
205 |
gr.Textbox(lines=1),
|
206 |
-
gr.
|
|
|
207 |
],
|
208 |
gr.Markdown(),
|
209 |
examples=examples,
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
import os
|
11 |
from functools import lru_cache
|
12 |
+
from typing import Tuple
|
13 |
|
14 |
load_dotenv()
|
15 |
|
|
|
96 |
return result
|
97 |
|
98 |
|
99 |
+
from typing import Tuple
|
100 |
+
|
101 |
+
|
102 |
def post_comment(
|
103 |
+
paper_url: str, comment: str, comment_id: str | None = None, token: str = HF_TOKEN
|
104 |
+
) -> Tuple[bool, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
"""
|
106 |
+
Post a comment on a paper or a reply to a comment using the Hugging Face API.
|
107 |
|
108 |
Args:
|
109 |
+
paper_url (str): The URL of the paper to post the comment on.
|
110 |
+
comment (str): The text of the comment or reply to post.
|
111 |
+
comment_id (str, optional): The ID of the comment to reply to. If provided, the function will post a reply to the specified comment. Defaults to None.
|
112 |
+
token (str, optional): The authentication token to use for the API request. Defaults to HF_TOKEN.
|
113 |
|
114 |
Returns:
|
115 |
+
Tuple[bool, str]: A tuple containing two elements:
|
116 |
+
- bool: True if the comment or reply was posted successfully, False otherwise.
|
117 |
+
- str: The ID of the posted comment or reply if successful, an empty string otherwise.
|
118 |
+
|
119 |
+
Raises:
|
120 |
+
requests.exceptions.RequestException: If an error occurs while making the API request.
|
121 |
"""
|
122 |
+
try:
|
123 |
+
paper_id = paper_url.split("/")[-1]
|
124 |
+
if comment_id:
|
125 |
+
url = f"https://huggingface.co/api/papers/{paper_id}/comment/{comment_id}/reply"
|
126 |
+
else:
|
127 |
+
url = f"https://huggingface.co/api/papers/{paper_id}/comment"
|
128 |
+
|
129 |
+
headers = {
|
130 |
+
"Authorization": f"Bearer {token}",
|
131 |
+
"Content-Type": "application/json",
|
132 |
+
}
|
133 |
+
comment_data = {"comment": comment}
|
134 |
+
|
135 |
+
response = requests.post(url, json=comment_data, headers=headers)
|
136 |
+
|
137 |
+
if response.status_code == 201:
|
138 |
+
posted_comment_id = response.json().get("id", "")
|
139 |
+
if comment_id:
|
140 |
+
print(
|
141 |
+
f"Reply posted successfully to comment {comment_id} for {paper_url}. Reply ID: {posted_comment_id}"
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
print(
|
145 |
+
f"Comment posted successfully for {paper_url}. Comment ID: {posted_comment_id}"
|
146 |
+
)
|
147 |
+
return True, posted_comment_id
|
148 |
+
else:
|
149 |
+
print(
|
150 |
+
f"Failed to post {'reply' if comment_id else 'comment'} for {paper_url}. Status code: {response.status_code}"
|
151 |
+
)
|
152 |
+
print(f"Response text: {response.text}")
|
153 |
+
return False, ""
|
154 |
+
|
155 |
+
except requests.exceptions.RequestException as e:
|
156 |
+
print(
|
157 |
+
f"Error posting {'reply' if comment_id else 'comment'} for {paper_url}: {e}"
|
158 |
+
)
|
159 |
+
return False, ""
|
160 |
|
161 |
|
162 |
+
# @lru_cache(maxsize=500)
|
163 |
+
# def is_comment_from_librarian_bot(html: str) -> bool:
|
164 |
+
# """
|
165 |
+
# Checks if the given HTML contains a comment from the librarian-bot.
|
166 |
+
|
167 |
+
# Args:
|
168 |
+
# html (str): The HTML content to check.
|
169 |
+
|
170 |
+
# Returns:
|
171 |
+
# bool: True if a comment from the librarian-bot is found, False otherwise.
|
172 |
+
# """
|
173 |
+
# soup = BeautifulSoup(html, "lxml")
|
174 |
+
# librarian_bot_links = soup.find_all("a", string="librarian-bot")
|
175 |
+
# return any(librarian_bot_links)
|
176 |
+
|
177 |
+
|
178 |
+
def check_if_lib_bot_comment_exists(paper_url: str) -> Tuple[bool, str]:
|
179 |
"""
|
180 |
+
Check if a comment or reply from the librarian-bot exists for a given paper URL using the Hugging Face API.
|
181 |
|
182 |
Args:
|
183 |
+
paper_url (str): The URL of the paper to check for librarian-bot comments.
|
184 |
|
185 |
Returns:
|
186 |
+
Tuple[bool, str]: A tuple containing two elements:
|
187 |
+
- bool: True if a comment or reply from the librarian-bot is found, False otherwise.
|
188 |
+
- str: The ID of the comment if a librarian-bot comment is found, an empty string otherwise.
|
189 |
+
|
190 |
+
Raises:
|
191 |
+
Exception: If an error occurs while retrieving comments from the API.
|
192 |
"""
|
193 |
try:
|
194 |
+
paper_id = paper_url.split("/")[-1]
|
195 |
+
url = f"https://huggingface.co/api/papers/{paper_id}/?field=comments"
|
196 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
197 |
+
response = requests.get(url, headers=headers)
|
198 |
+
|
199 |
+
if response.status_code == 200:
|
200 |
+
paper_data = response.json()
|
201 |
+
comments = paper_data.get("comments", [])
|
202 |
+
for comment in comments:
|
203 |
+
comment_author = comment.get("author", {}).get("name")
|
204 |
+
if comment_author == "librarian-bot":
|
205 |
+
return True, comment.get("id")
|
206 |
+
replies = comment.get("replies", [])
|
207 |
+
for reply in replies:
|
208 |
+
reply_author = reply.get("author", {}).get("name")
|
209 |
+
if reply_author == "librarian-bot":
|
210 |
+
return True, comment.get("id")
|
211 |
+
else:
|
212 |
+
print(
|
213 |
+
f"Failed to retrieve comments for {paper_url}. Status code: {response.status_code}"
|
214 |
+
)
|
215 |
+
|
216 |
+
return False, ""
|
217 |
except Exception as e:
|
218 |
print(f"Error checking if comment exists for {paper_url}: {e}")
|
219 |
+
return True, "" # default to not posting comment
|
220 |
|
221 |
|
222 |
def log_comments(paper_url: str, comment: str):
|
|
|
239 |
json.dump(data, f)
|
240 |
|
241 |
|
242 |
+
def return_recommendations(
|
243 |
+
url: str, comment_id: str | None = None, post_to_paper: bool = True
|
244 |
+
) -> str:
|
245 |
arxiv_id = parse_arxiv_id_from_paper_url(url)
|
246 |
recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}")
|
247 |
filtered_recommendations = filter_recommendations(recommendations)
|
248 |
if post_to_paper:
|
249 |
+
existing_comments, comment_id = check_if_lib_bot_comment_exists(url)
|
250 |
+
if existing_comments:
|
251 |
+
gr.Info(f"Existing comment: {comment_id}...skipping posting comment")
|
|
|
252 |
else:
|
253 |
comment = format_comment(
|
254 |
format_recommendation_into_markdown(arxiv_id, filtered_recommendations)
|
255 |
)
|
256 |
+
if comment_id:
|
257 |
+
comment_status, posted_comment_id = post_comment(
|
258 |
+
url, comment, comment_id, token=HF_TOKEN
|
259 |
+
)
|
260 |
+
if comment_status:
|
261 |
+
log_comments(url, comment)
|
262 |
+
gr.Info(f"Posted reply to comment {posted_comment_id}")
|
263 |
+
if not comment_id:
|
264 |
+
comment_status, posted_comment_id = post_comment(
|
265 |
+
url, comment, token=HF_TOKEN
|
266 |
+
)
|
267 |
+
if comment_status:
|
268 |
+
log_comments(url, comment)
|
269 |
+
gr.Info(f"Posted comment {posted_comment_id}")
|
270 |
else:
|
271 |
gr.Info("Failed to post comment")
|
272 |
return format_recommendation_into_markdown(arxiv_id, filtered_recommendations)
|
|
|
279 |
" yet if they are new or have not been indexed by Semantic Scholar."
|
280 |
)
|
281 |
examples = [
|
282 |
+
["https://huggingface.co/papers/2309.12307", None, False],
|
283 |
+
["https://huggingface.co/papers/2211.10086", None, False],
|
284 |
]
|
285 |
interface = gr.Interface(
|
286 |
return_recommendations,
|
287 |
[
|
288 |
gr.Textbox(lines=1),
|
289 |
+
gr.Textbox(None, lines=1, label="Comment ID (if replying to a comment)"),
|
290 |
+
gr.Checkbox(False, label="Post recommendations to Paper page?"),
|
291 |
],
|
292 |
gr.Markdown(),
|
293 |
examples=examples,
|