File size: 5,415 Bytes
de9d198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e4491
dc27de6
de9d198
 
e1232bd
 
 
 
 
 
dc27de6
 
e1232bd
dc27de6
de9d198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e4491
 
de9d198
 
 
 
 
 
34c5415
de9d198
 
80e4491
 
de9d198
 
 
 
 
 
a1c7876
de9d198
80e4491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de9d198
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
from compel import Compel, ReturnedEmbeddingsType
import torch
import os

try:
    import intel_extension_for_pytorch as ipex
except:
    pass

from PIL import Image
import numpy as np
import gradio as gr
import psutil


SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
    "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")

if mps_available:
    device = torch.device("mps")
    torch_device = "cpu"
    torch_dtype = torch.float32

model_id = "stabilityai/stable-diffusion-xl-base-1.0"

if SAFETY_CHECKER == "True":
    pipe = DiffusionPipeline.from_pretrained(model_id)
else:
    pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)

pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)

# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
    pipe.enable_attention_slicing()

if TORCH_COMPILE:
    pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
    pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)

    pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)

# Load LCM LoRA
pipe.load_lora_weights(
    "lcm-sd/lcm-sdxl-lora",
    weight_name="lcm_sdxl_lora.safetensors",
    #adapter_name="lcm",
    use_auth_token=HF_TOKEN,
)

## Load papercut LoRA
#pipe.load_lora_weights(
#    "TheLastBen/Papercut_SDXL",
#    weight_name="papercut.safetensors",
#    adapter_name="papercut",
#)

# Mix the LoRAs
#pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])

compel_proc = Compel(
    tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
    text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
    requires_pooled=[False, True],
)


def predict(
    prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True)
):
    generator = torch.manual_seed(seed)
    prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)

    results = pipe(
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        generator=generator,
        num_inference_steps=steps,
        guidance_scale=guidance,
        width=1024,
        height=1024,
        # original_inference_steps=params.lcm_steps,
        output_type="pil",
    )
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        raise gr.Error("NSFW content detected.")
    return results.images[0]


css = """
#container{
    margin: 0 auto;
    max-width: 50rem;
}
#intro{
    max-width: 32rem;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        gr.Markdown(
            """# Ultra-Fast SDXL with Latent Consistency LoRA
            In this Space, SDXL is loaded with a latent consistency LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
            """,
            elem_id="intro",
        )
        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Insert your prompt here:", value="papercut style of a cute monster", scale=5, container=False
                )
                generate_bt = gr.Button("Generate", scale=1)
        
        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            guidance = gr.Slider(
                label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
            )
            steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
            seed = gr.Slider(
                randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
            )
        with gr.Group():
            gr.Markdown('''## Using it with `diffusers`
            ```py
            from diffusers import DiffusionPipeline, LCMScheduler
            pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda") 
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
            pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora")

            results = pipe(
                prompt="The spirit of a tamagotchi wandering in the city of Vienna",
                num_inference_steps=4,
                guidance_scale=0.5,
            )
            results.images[0]
            ```
            ''')
            
        inputs = [prompt, guidance, steps, seed]
        generate_bt.click(fn=predict, inputs=inputs, outputs=image)

demo.queue()
demo.launch()