Spaces:
Running
on
A100
Running
on
A100
File size: 5,415 Bytes
de9d198 80e4491 dc27de6 de9d198 e1232bd dc27de6 e1232bd dc27de6 de9d198 80e4491 de9d198 34c5415 de9d198 80e4491 de9d198 a1c7876 de9d198 80e4491 de9d198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
from compel import Compel, ReturnedEmbeddingsType
import torch
import os
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import psutil
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained(model_id)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
# Load LCM LoRA
pipe.load_lora_weights(
"lcm-sd/lcm-sdxl-lora",
weight_name="lcm_sdxl_lora.safetensors",
#adapter_name="lcm",
use_auth_token=HF_TOKEN,
)
## Load papercut LoRA
#pipe.load_lora_weights(
# "TheLastBen/Papercut_SDXL",
# weight_name="papercut.safetensors",
# adapter_name="papercut",
#)
# Mix the LoRAs
#pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
compel_proc = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
def predict(
prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True)
):
generator = torch.manual_seed(seed)
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
results = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
generator=generator,
num_inference_steps=steps,
guidance_scale=guidance,
width=1024,
height=1024,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
raise gr.Error("NSFW content detected.")
return results.images[0]
css = """
#container{
margin: 0 auto;
max-width: 50rem;
}
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""# Ultra-Fast SDXL with Latent Consistency LoRA
In this Space, SDXL is loaded with a latent consistency LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", value="papercut style of a cute monster", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
with gr.Group():
gr.Markdown('''## Using it with `diffusers`
```py
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora")
results = pipe(
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
num_inference_steps=4,
guidance_scale=0.5,
)
results.images[0]
```
''')
inputs = [prompt, guidance, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image)
demo.queue()
demo.launch()
|