multimodalart HF staff commited on
Commit
80e4491
·
1 Parent(s): e1232bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -4
app.py CHANGED
@@ -60,7 +60,7 @@ if TORCH_COMPILE:
60
  pipe.load_lora_weights(
61
  "lcm-sd/lcm-sdxl-lora",
62
  weight_name="lcm_sdxl_lora.safetensors",
63
- adapter_name="lcm",
64
  use_auth_token=HF_TOKEN,
65
  )
66
 
@@ -123,7 +123,8 @@ css = """
123
  with gr.Blocks(css=css) as demo:
124
  with gr.Column(elem_id="container"):
125
  gr.Markdown(
126
- """# Ultra-Fast SDXL a Latent Consistency Model LoRA
 
127
  """,
128
  elem_id="intro",
129
  )
@@ -133,6 +134,8 @@ with gr.Blocks(css=css) as demo:
133
  placeholder="Insert your prompt here:", value="papercut style of a cute monster", scale=5, container=False
134
  )
135
  generate_bt = gr.Button("Generate", scale=1)
 
 
136
  with gr.Accordion("Advanced options", open=False):
137
  guidance = gr.Slider(
138
  label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
@@ -141,8 +144,23 @@ with gr.Blocks(css=css) as demo:
141
  seed = gr.Slider(
142
  randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
143
  )
144
- image = gr.Image(type="filepath")
145
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  inputs = [prompt, guidance, steps, seed]
147
  generate_bt.click(fn=predict, inputs=inputs, outputs=image)
148
 
 
60
  pipe.load_lora_weights(
61
  "lcm-sd/lcm-sdxl-lora",
62
  weight_name="lcm_sdxl_lora.safetensors",
63
+ #adapter_name="lcm",
64
  use_auth_token=HF_TOKEN,
65
  )
66
 
 
123
  with gr.Blocks(css=css) as demo:
124
  with gr.Column(elem_id="container"):
125
  gr.Markdown(
126
+ """# Ultra-Fast SDXL with Latent Consistency LoRA
127
+ In this Space, SDXL is loaded with a latent consistency LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
128
  """,
129
  elem_id="intro",
130
  )
 
134
  placeholder="Insert your prompt here:", value="papercut style of a cute monster", scale=5, container=False
135
  )
136
  generate_bt = gr.Button("Generate", scale=1)
137
+
138
+ image = gr.Image(type="filepath")
139
  with gr.Accordion("Advanced options", open=False):
140
  guidance = gr.Slider(
141
  label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
 
144
  seed = gr.Slider(
145
  randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
146
  )
147
+ with gr.Group():
148
+ gr.Markdown('''## Using it with `diffusers`
149
+ ```py
150
+ from diffusers import DiffusionPipeline, LCMScheduler
151
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
152
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
153
+ pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora")
154
+
155
+ results = pipe(
156
+ prompt="The spirit of a tamagotchi wandering in the city of Vienna",
157
+ num_inference_steps=4,
158
+ guidance_scale=0.5,
159
+ )
160
+ results.images[0]
161
+ ```
162
+ ''')
163
+
164
  inputs = [prompt, guidance, steps, seed]
165
  generate_bt.click(fn=predict, inputs=inputs, outputs=image)
166