kithangw's picture
Update app.py
5f0c212 verified
raw
history blame
2.29 kB
import streamlit as st
import torch
from PIL import Image
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
# Initialize the image-to-text pipeline and models
@st.cache(allow_output_mutation=True)
def load_models():
image_pipeline = pipeline("image-to-text", model="microsoft/trocr-large-printed")
phishing_model = AutoModelForSequenceClassification.from_pretrained("Phishinglink", num_labels=2)
phishing_tokenizer = AutoTokenizer.from_pretrained("google/bert_uncased_L-2_H-128_A-2")
return image_pipeline, phishing_model, phishing_tokenizer
image_pipeline, phishing_model, phishing_tokenizer = load_models()
# Define the main function
def main(image_input):
# Convert image to URL text
def image2url(image_input):
url_for_recognise = image_pipeline(image_input)[0]['generated_text'].replace(" ", "").lower()
st.write(f"Recognized URL: {url_for_recognise}")
return url_for_recognise
# Check if the URL text is a phishing link
def checkphishing(url_for_recognise):
link_token = phishing_tokenizer(url_for_recognise, max_length=512, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad(): # Disable gradient calculation for inference
output = phishing_model(**link_token)
probabilities = torch.nn.functional.softmax(output.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
predicted_prob = probabilities[0, predicted_class].item()
labels = ['Not Phishing', 'Phishing']
prediction_label = labels[predicted_class]
sentence = f"The URL '{url_for_recognise}' is classified as '{prediction_label}' with a probability of {predicted_prob:.2f}."
return sentence
url_text = image2url(image_input)
result_sentence = checkphishing(url_text)
return result_sentence
# Streamlit interface
st.title("Phishing URL Detection from Image")
uploaded_image = st.file_uploader("Upload an image of the URL", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
image = Image.open(uploaded_image)
st.image(image, caption='Uploaded URL Image', use_column_width=True)
if st.button('Detect'):
result = main(uploaded_image)
st.write(result)