import streamlit as st import torch from PIL import Image from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer # Initialize the image-to-text pipeline and models @st.cache(allow_output_mutation=True) def load_models(): image_pipeline = pipeline("image-to-text", model="microsoft/trocr-large-printed") phishing_model = AutoModelForSequenceClassification.from_pretrained("Phishinglink", num_labels=2) phishing_tokenizer = AutoTokenizer.from_pretrained("google/bert_uncased_L-2_H-128_A-2") return image_pipeline, phishing_model, phishing_tokenizer image_pipeline, phishing_model, phishing_tokenizer = load_models() # Define the main function def main(image_input): # Convert image to URL text def image2url(image_input): url_for_recognise = image_pipeline(image_input)[0]['generated_text'].replace(" ", "").lower() st.write(f"Recognized URL: {url_for_recognise}") return url_for_recognise # Check if the URL text is a phishing link def checkphishing(url_for_recognise): link_token = phishing_tokenizer(url_for_recognise, max_length=512, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): # Disable gradient calculation for inference output = phishing_model(**link_token) probabilities = torch.nn.functional.softmax(output.logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=-1).item() predicted_prob = probabilities[0, predicted_class].item() labels = ['Not Phishing', 'Phishing'] prediction_label = labels[predicted_class] sentence = f"The URL '{url_for_recognise}' is classified as '{prediction_label}' with a probability of {predicted_prob:.2f}." return sentence url_text = image2url(image_input) result_sentence = checkphishing(url_text) return result_sentence # Streamlit interface st.title("Phishing URL Detection from Image") uploaded_image = st.file_uploader("Upload an image of the URL", type=["png", "jpg", "jpeg"]) if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption='Uploaded URL Image', use_column_width=True) if st.button('Detect'): result = main(uploaded_image) st.write(result)