fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
14.4 kB
import copy
import random
import glob
import json
import logging
import os
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils
from xtuner.registry import BUILDER
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import GCG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class GCGDataset(Dataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
repeats=1,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__()
self.question_templates = GCG_QUESTIONS
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.num_classes_per_sample = num_classes_per_sample
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
reg_tokens = ['<bbox>', '<point>']
segmentation_tokens = ['[SEG]']
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.max_length = max_length
self.template_map_fn = BUILDER.build(template_map_fn)
self.text_data = self.json_file_preprocess(data_path, image_folder)
self.image_folder = image_folder
self.image_processor = BUILDER.build(image_processor)
size = self.image_processor.crop_size
if isinstance(size, dict):
self.image_w, self.image_h = size['width'], size['height']
elif isinstance(size, int):
self.image_h, self.image_w = size, size
else:
self.image_w, self.image_h = size
self.pad_image_to_square = pad_image_to_square
self.repeats = repeats
def json_file_preprocess(self, data_path, image_folder=None):
with open(data_path, 'r') as f:
json_data = json.load(f)
return json_data
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
cur_len = 100
length_list.append(cur_len)
return length_list * self.repeats
def __len__(self):
return len(self.text_data) * self.repeats
def real_len(self):
return len(self.text_data)
def _parse_annotations(self, ann_info):
image_path = os.path.join(self.image_folder, ann_info['file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
ann_info['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
ann_info['pixel_values'] = image
caption = ann_info['caption'].strip('"').strip()
masks, phrases, tokens_positive = [], [], []
for word, grounding in ann_info["groundings"].items():
phrases.append(word)
tokens_positive.append(grounding["token_positives"])
# Convert segmentation to binary mask
binary_mask = np.zeros((height, width), dtype=np.uint8)
for rle in grounding["rle_masks"]:
m = mask_utils.decode(rle).astype(np.uint8)
binary_mask += m.squeeze()
masks.append(binary_mask)
def sort_by_start_index(items, order):
return [items[i] for i in order]
phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0])
masks = sort_by_start_index(masks, phrase_order)
phrases = sort_by_start_index(phrases, phrase_order)
tokens_positive = sort_by_start_index(tokens_positive, phrase_order)
ann_info.update({
'image_path': image_path,
'caption': caption,
'masks': masks,
'phrases': phrases,
'tokens_positive': tokens_positive,
})
return ann_info
def create_conversation(self, caption, tokens_positive):
question = random.choice(self.question_templates).strip()
# Prepare caption with tags
def tag_caption(caption, tokens):
for start, end in sorted(tokens, key=lambda x: x[0], reverse=True):
caption = f"{caption[:start]}<p> {caption[start:end]} </p> [SEG]{caption[end:]}"
return caption
detailed_answer = tag_caption(caption, tokens_positive)
question = 'The <image> provides an overview of the picture.\n' + question
conversation = [{'input': question, 'output': detailed_answer}]
return conversation
def __getitem__(self, index):
index = index % self.real_len()
data_dict = {}
ann_info = copy.deepcopy(self.text_data[index])
ann_info = self._parse_annotations(ann_info)
data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values')
data_dict['pixel_values'] = ann_info.pop('pixel_values')
if len(ann_info['masks']) == 0:
return self.__getitem__(0)
data_dict['masks'] = torch.from_numpy(np.stack(ann_info['masks'], axis=0))
conversation = self.create_conversation(ann_info['caption'], ann_info['tokens_positive'])
data_dict['conversation'] = conversation
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class GranDfGCGDataset(GCGDataset):
pass
class RefCOCOgGCGDataset(GCGDataset):
def json_file_preprocess(self, data_path, image_folder=None):
with open(data_path, 'r') as f:
json_data = json.load(f)
return [list(line.values())[0] for line in json_data]
def _parse_annotations(self, ann_info):
image_path = os.path.join(self.image_folder, ann_info['img_file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
ann_info['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
ann_info['pixel_values'] = image
caption = ann_info['caption'].strip('"').strip().lower()
masks, phrases, tokens_positive = [], [], []
for detail in ann_info['refs']:
phrase = detail['sentence']
if phrase.lower() in caption:
phrases.append(phrase)
index = caption.find(phrase)
end_index = index + len(phrase) if index != -1 else -1
tokens_positive.append([index, end_index])
binary_mask = np.zeros((height, width), dtype=np.uint8)
for seg in detail["segmentation"]:
rles = mask_utils.frPyObjects([seg], height, width)
m = mask_utils.decode(rles)
m = m.astype(np.uint8)
binary_mask += m.squeeze()
masks.append(binary_mask)
def sort_by_start_index(items, order):
return [items[i] for i in order]
phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0])
masks = sort_by_start_index(masks, phrase_order)
phrases = sort_by_start_index(phrases, phrase_order)
tokens_positive = sort_by_start_index(tokens_positive, phrase_order)
ann_info.update({
'image_path': image_path,
'caption': caption,
'masks': masks,
'phrases': phrases,
'tokens_positive': tokens_positive,
})
return ann_info
class OpenPsgGCGDataset(GCGDataset):
pass
class Flickr30kGCGDataset(GCGDataset):
def json_file_preprocess(self, data_path, image_folder=None):
def filter_images(data_infos, min_size):
return [i for i, info in enumerate(data_infos) if min(info['width'], info['height']) >= min_size]
self.coco = COCO(data_path)
self.image_ids = self.coco.getImgIds()
data_infos = []
total_ann_ids = []
removed_img_count = 0
for img_id in self.image_ids:
info = self.coco.loadImgs([img_id])[0]
if len(info['caption'].split(' ')) < 3:
removed_img_count += 1
continue
info['filename'] = info['file_name'].split('_')[-1]
info['height'] = int(info['height'])
info['width'] = int(info['width'])
data_infos.append(info)
ann_ids = self.coco.getAnnIds(imgIds=[img_id])
total_ann_ids.extend(ann_ids)
assert len(set(total_ann_ids)) == len(total_ann_ids), f"Non-unique annotation IDs in '{data_path}'!"
print(f'Removed {removed_img_count} images.')
data_infos = [data_infos[i] for i in filter_images(data_infos, min_size=32)]
return data_infos
def _parse_annotations(self, img_info):
ann_ids = self.coco.getAnnIds(imgIds=img_info['id'])
ann_info = self.coco.loadAnns(ann_ids)
annotations = {'phrases': [], 'caption': img_info['caption'], 'masks': [], 'tokens_positive': []}
image_path = os.path.join(self.image_folder, img_info['file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
annotations['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
annotations['pixel_values'] = image
for ann in ann_info:
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
if inter_w * inter_h == 0 or ann['area'] <= 0 or w < 1 or h < 1:
continue
bbox = [x1, y1, x1 + w, y1 + h]
tokens_positive = ann['tokens_positive']
phrase = [img_info['caption'][span[0]:span[1]] for span in tokens_positive]
annotations['phrases'].append(phrase[0])
annotations['tokens_positive'].append(tokens_positive[0])
rle = ann['sam_mask']
mask_decoded = mask_utils.decode(rle).astype(np.uint8)
annotations['masks'].append(mask_decoded)
def sort_by_start_index(items, order):
return [items[i] for i in order]
phrase_order = sorted(range(len(annotations['tokens_positive'])), key=lambda x: annotations['tokens_positive'][x][0])
annotations['masks'] = sort_by_start_index(annotations['masks'], phrase_order)
annotations['phrases'] = sort_by_start_index(annotations['phrases'], phrase_order)
annotations['tokens_positive'] = sort_by_start_index(annotations['tokens_positive'], phrase_order)
return annotations
if __name__ == '__main__':
from transformers import CLIPImageProcessor, AutoTokenizer
from third_parts.segment_anything.utils.transforms import ResizeLongestSide
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path)
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
extra_image_processor = dict(
type=ResizeLongestSide,
target_length=1024,
)
from xtuner.utils.templates import PROMPT_TEMPLATE
prompt_template = PROMPT_TEMPLATE.vicuna
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
dataset = Flickr30kGCGDataset(
image_folder='data/flickr30k/flickr30k-images/',
image_processor=image_processor,
data_path='./data/GranDf/annotations/train/flickr_mergedGT_GCG_train.json',
tokenizer=tokenizer,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=2048,
pad_image_to_square=True,
repeats=1,
num_classes_per_sample=3,
extra_image_processor=extra_image_processor)
for i in range(1000):
print(dataset[i])