import copy import random import glob import json import logging import os import torch from mmengine import print_log from mmengine.config import Config, ConfigDict from PIL import Image from torch.utils.data import Dataset import numpy as np import torch.nn.functional as F from pycocotools.coco import COCO from pycocotools import mask as mask_utils from xtuner.registry import BUILDER from xtuner.dataset.utils import encode_fn from xtuner.dataset.map_fns import llava_map_fn from projects.glamm.datasets.utils.utils import expand2square from projects.glamm.datasets.utils.utils import GCG_QUESTIONS, ANSWER_LIST from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN class GCGDataset(Dataset): def __init__(self, image_folder, image_processor, data_path=None, tokenizer=None, template_map_fn=None, max_length=2048, pad_image_to_square=False, repeats=1, num_classes_per_sample=3, extra_image_processor=None): super().__init__() self.question_templates = GCG_QUESTIONS if extra_image_processor is not None: self.extra_image_processor = BUILDER.build(extra_image_processor) self.num_classes_per_sample = num_classes_per_sample self.tokenizer = BUILDER.build(tokenizer) self.tokenizer.add_tokens( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True ) reg_tokens = ['', ''] segmentation_tokens = ['[SEG]'] phrase_tokens = ['

', '

'] special_tokens = reg_tokens + segmentation_tokens + phrase_tokens self.tokenizer.add_tokens(special_tokens, special_tokens=True) self.max_length = max_length self.template_map_fn = BUILDER.build(template_map_fn) self.text_data = self.json_file_preprocess(data_path, image_folder) self.image_folder = image_folder self.image_processor = BUILDER.build(image_processor) size = self.image_processor.crop_size if isinstance(size, dict): self.image_w, self.image_h = size['width'], size['height'] elif isinstance(size, int): self.image_h, self.image_w = size, size else: self.image_w, self.image_h = size self.pad_image_to_square = pad_image_to_square self.repeats = repeats def json_file_preprocess(self, data_path, image_folder=None): with open(data_path, 'r') as f: json_data = json.load(f) return json_data @property def modality_length(self): length_list = [] for data_dict in self.text_data: cur_len = 100 length_list.append(cur_len) return length_list * self.repeats def __len__(self): return len(self.text_data) * self.repeats def real_len(self): return len(self.text_data) def _parse_annotations(self, ann_info): image_path = os.path.join(self.image_folder, ann_info['file_name']) image = Image.open(image_path).convert('RGB') if hasattr(self, 'extra_image_processor'): g_image = np.array(image) # for grounding g_image = self.extra_image_processor.apply_image(g_image) g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() ann_info['g_pixel_values'] = g_pixel_values width, height = image.size if self.pad_image_to_square: image = expand2square( image, tuple(int(x * 255) for x in self.image_processor.image_mean)) image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] ann_info['pixel_values'] = image caption = ann_info['caption'].strip('"').strip() masks, phrases, tokens_positive = [], [], [] for word, grounding in ann_info["groundings"].items(): phrases.append(word) tokens_positive.append(grounding["token_positives"]) # Convert segmentation to binary mask binary_mask = np.zeros((height, width), dtype=np.uint8) for rle in grounding["rle_masks"]: m = mask_utils.decode(rle).astype(np.uint8) binary_mask += m.squeeze() masks.append(binary_mask) def sort_by_start_index(items, order): return [items[i] for i in order] phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0]) masks = sort_by_start_index(masks, phrase_order) phrases = sort_by_start_index(phrases, phrase_order) tokens_positive = sort_by_start_index(tokens_positive, phrase_order) ann_info.update({ 'image_path': image_path, 'caption': caption, 'masks': masks, 'phrases': phrases, 'tokens_positive': tokens_positive, }) return ann_info def create_conversation(self, caption, tokens_positive): question = random.choice(self.question_templates).strip() # Prepare caption with tags def tag_caption(caption, tokens): for start, end in sorted(tokens, key=lambda x: x[0], reverse=True): caption = f"{caption[:start]}

{caption[start:end]}

[SEG]{caption[end:]}" return caption detailed_answer = tag_caption(caption, tokens_positive) question = 'The provides an overview of the picture.\n' + question conversation = [{'input': question, 'output': detailed_answer}] return conversation def __getitem__(self, index): index = index % self.real_len() data_dict = {} ann_info = copy.deepcopy(self.text_data[index]) ann_info = self._parse_annotations(ann_info) data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values') data_dict['pixel_values'] = ann_info.pop('pixel_values') if len(ann_info['masks']) == 0: return self.__getitem__(0) data_dict['masks'] = torch.from_numpy(np.stack(ann_info['masks'], axis=0)) conversation = self.create_conversation(ann_info['caption'], ann_info['tokens_positive']) data_dict['conversation'] = conversation result = self.template_map_fn(data_dict) data_dict.update(result) result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True) data_dict.update(result) return data_dict class GranDfGCGDataset(GCGDataset): pass class RefCOCOgGCGDataset(GCGDataset): def json_file_preprocess(self, data_path, image_folder=None): with open(data_path, 'r') as f: json_data = json.load(f) return [list(line.values())[0] for line in json_data] def _parse_annotations(self, ann_info): image_path = os.path.join(self.image_folder, ann_info['img_file_name']) image = Image.open(image_path).convert('RGB') if hasattr(self, 'extra_image_processor'): g_image = np.array(image) # for grounding g_image = self.extra_image_processor.apply_image(g_image) g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() ann_info['g_pixel_values'] = g_pixel_values width, height = image.size if self.pad_image_to_square: image = expand2square( image, tuple(int(x * 255) for x in self.image_processor.image_mean)) image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] ann_info['pixel_values'] = image caption = ann_info['caption'].strip('"').strip().lower() masks, phrases, tokens_positive = [], [], [] for detail in ann_info['refs']: phrase = detail['sentence'] if phrase.lower() in caption: phrases.append(phrase) index = caption.find(phrase) end_index = index + len(phrase) if index != -1 else -1 tokens_positive.append([index, end_index]) binary_mask = np.zeros((height, width), dtype=np.uint8) for seg in detail["segmentation"]: rles = mask_utils.frPyObjects([seg], height, width) m = mask_utils.decode(rles) m = m.astype(np.uint8) binary_mask += m.squeeze() masks.append(binary_mask) def sort_by_start_index(items, order): return [items[i] for i in order] phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0]) masks = sort_by_start_index(masks, phrase_order) phrases = sort_by_start_index(phrases, phrase_order) tokens_positive = sort_by_start_index(tokens_positive, phrase_order) ann_info.update({ 'image_path': image_path, 'caption': caption, 'masks': masks, 'phrases': phrases, 'tokens_positive': tokens_positive, }) return ann_info class OpenPsgGCGDataset(GCGDataset): pass class Flickr30kGCGDataset(GCGDataset): def json_file_preprocess(self, data_path, image_folder=None): def filter_images(data_infos, min_size): return [i for i, info in enumerate(data_infos) if min(info['width'], info['height']) >= min_size] self.coco = COCO(data_path) self.image_ids = self.coco.getImgIds() data_infos = [] total_ann_ids = [] removed_img_count = 0 for img_id in self.image_ids: info = self.coco.loadImgs([img_id])[0] if len(info['caption'].split(' ')) < 3: removed_img_count += 1 continue info['filename'] = info['file_name'].split('_')[-1] info['height'] = int(info['height']) info['width'] = int(info['width']) data_infos.append(info) ann_ids = self.coco.getAnnIds(imgIds=[img_id]) total_ann_ids.extend(ann_ids) assert len(set(total_ann_ids)) == len(total_ann_ids), f"Non-unique annotation IDs in '{data_path}'!" print(f'Removed {removed_img_count} images.') data_infos = [data_infos[i] for i in filter_images(data_infos, min_size=32)] return data_infos def _parse_annotations(self, img_info): ann_ids = self.coco.getAnnIds(imgIds=img_info['id']) ann_info = self.coco.loadAnns(ann_ids) annotations = {'phrases': [], 'caption': img_info['caption'], 'masks': [], 'tokens_positive': []} image_path = os.path.join(self.image_folder, img_info['file_name']) image = Image.open(image_path).convert('RGB') if hasattr(self, 'extra_image_processor'): g_image = np.array(image) # for grounding g_image = self.extra_image_processor.apply_image(g_image) g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() annotations['g_pixel_values'] = g_pixel_values width, height = image.size if self.pad_image_to_square: image = expand2square( image, tuple(int(x * 255) for x in self.image_processor.image_mean)) image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] annotations['pixel_values'] = image for ann in ann_info: if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0 or ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w, y1 + h] tokens_positive = ann['tokens_positive'] phrase = [img_info['caption'][span[0]:span[1]] for span in tokens_positive] annotations['phrases'].append(phrase[0]) annotations['tokens_positive'].append(tokens_positive[0]) rle = ann['sam_mask'] mask_decoded = mask_utils.decode(rle).astype(np.uint8) annotations['masks'].append(mask_decoded) def sort_by_start_index(items, order): return [items[i] for i in order] phrase_order = sorted(range(len(annotations['tokens_positive'])), key=lambda x: annotations['tokens_positive'][x][0]) annotations['masks'] = sort_by_start_index(annotations['masks'], phrase_order) annotations['phrases'] = sort_by_start_index(annotations['phrases'], phrase_order) annotations['tokens_positive'] = sort_by_start_index(annotations['tokens_positive'], phrase_order) return annotations if __name__ == '__main__': from transformers import CLIPImageProcessor, AutoTokenizer from third_parts.segment_anything.utils.transforms import ResizeLongestSide pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained' llm_name_or_path = 'lmsys/vicuna-7b-v1.5' tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=llm_name_or_path) image_processor = dict( type=CLIPImageProcessor.from_pretrained, pretrained_model_name_or_path='openai/clip-vit-large-patch14-336') extra_image_processor = dict( type=ResizeLongestSide, target_length=1024, ) from xtuner.utils.templates import PROMPT_TEMPLATE prompt_template = PROMPT_TEMPLATE.vicuna from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn dataset = Flickr30kGCGDataset( image_folder='data/flickr30k/flickr30k-images/', image_processor=image_processor, data_path='./data/GranDf/annotations/train/flickr_mergedGT_GCG_train.json', tokenizer=tokenizer, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=2048, pad_image_to_square=True, repeats=1, num_classes_per_sample=3, extra_image_processor=extra_image_processor) for i in range(1000): print(dataset[i])