Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import random | |
import glob | |
import json | |
import logging | |
import os | |
import torch | |
from mmengine import print_log | |
from mmengine.config import Config, ConfigDict | |
from PIL import Image | |
from torch.utils.data import Dataset | |
import numpy as np | |
import torch.nn.functional as F | |
from pycocotools.coco import COCO | |
from xtuner.registry import BUILDER | |
from xtuner.dataset.utils import encode_fn | |
from xtuner.dataset.map_fns import llava_map_fn | |
from projects.glamm.datasets.utils.utils import expand2square | |
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST | |
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
class SemanticSegDataset(Dataset): | |
def __init__(self, | |
image_folder, | |
image_processor, | |
data_path=None, | |
tokenizer=None, | |
offline_processed_text_folder=None, | |
max_dataset_length=None, | |
dataset_map_fn=None, | |
template_map_fn=None, | |
max_length=2048, | |
pad_image_to_square=False, | |
num_proc=8, | |
lazy=False, | |
repeats=1, | |
gcg_format=False, | |
num_classes_per_sample=3, | |
extra_image_processor=None): | |
super().__init__() | |
self.gcg_format = gcg_format | |
if extra_image_processor is not None: | |
self.extra_image_processor = BUILDER.build(extra_image_processor) | |
self.num_classes_per_sample = num_classes_per_sample | |
self.tokenizer = BUILDER.build(tokenizer) | |
self.tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
reg_tokens = ['<bbox>', '<point>'] | |
segmentation_tokens = ['[SEG]'] | |
phrase_tokens = ['<p>', '</p>'] | |
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens | |
self.tokenizer.add_tokens(special_tokens, special_tokens=True) | |
assert offline_processed_text_folder or (data_path and tokenizer) | |
self.lazy = lazy | |
self.max_length = max_length | |
self.dataset_map_fn = dataset_map_fn | |
self.template_map_fn = template_map_fn | |
if isinstance(self.template_map_fn, dict) and self.lazy: | |
_type = self.template_map_fn['type'] | |
del self.template_map_fn['type'] | |
self.template_map_fn = _type(**self.template_map_fn) | |
if offline_processed_text_folder and data_path: | |
print_log( | |
'Both `offline_processed_text_folder` and ' | |
'`data_path` are set, and we load dataset from' | |
'`offline_processed_text_folder` ' | |
f'({offline_processed_text_folder})', | |
logger='current', | |
level=logging.WARNING) | |
if offline_processed_text_folder is not None: | |
raise NotImplementedError | |
else: | |
self.image_label_datas = self.json_file_preprocess(data_path, image_folder) | |
self.image_folder = image_folder | |
if isinstance(image_processor, dict) or isinstance(image_processor, Config) or isinstance(image_processor, ConfigDict): | |
self.image_processor = BUILDER.build(image_processor) | |
else: | |
self.image_processor = image_processor | |
size = self.image_processor.crop_size | |
if isinstance(size, dict): | |
self.image_w, self.image_h = size['width'], size['height'] | |
elif isinstance(size, int): | |
self.image_h, self.image_w = size, size | |
else: | |
self.image_w, self.image_h = size | |
self.pad_image_to_square = pad_image_to_square | |
self.down_ratio = 1 | |
self.repeats = repeats | |
def json_file_preprocess(self, data_path, image_folder): | |
# ade20k | |
with open(data_path, 'r') as file: | |
ade20k_classes = json.load(file) | |
ade20k_image_dir = image_folder | |
ade20k_images = [os.path.join(ade20k_image_dir, img) for img in os.listdir(ade20k_image_dir) if | |
img.endswith('.jpg')] | |
ade20k_labels = [img.replace(".jpg", ".png").replace( | |
"images", "annotations") for img in ade20k_images] | |
self.classes = np.array(ade20k_classes) | |
ret = [] | |
for image, label in zip(ade20k_images, ade20k_labels): | |
ret.append({"image": image, "label": label}) | |
return ret | |
def __len__(self): | |
return len(self.image_label_datas) * self.repeats | |
def modality_length(self): | |
length_list = [] | |
for data_dict in self.image_label_datas: | |
length_list.append(100) | |
length_list = length_list * self.repeats | |
return length_list | |
def real_len(self): | |
return len(self.image_label_datas) | |
def decode_mask(self, label_path): | |
label = np.array(Image.open(label_path)) | |
# ade20k | |
label = np.where(label == 0, 255, label - 1) | |
unique_labels = [lbl for lbl in np.unique(label) if lbl != 255] | |
if not unique_labels: | |
return None, None | |
selected_labels = np.random.choice(unique_labels, min( | |
len(unique_labels), self.num_classes_per_sample), replace=False) | |
label = torch.from_numpy(label).long() | |
masks = torch.stack([label == class_id for class_id in selected_labels], dim=0) | |
return masks, selected_labels | |
def __getitem__(self, index): | |
index = index % self.real_len() | |
data_dict = copy.deepcopy(self.image_label_datas[index]) | |
assert 'image' in data_dict.keys() | |
if data_dict.get('image', None) is not None: | |
image_file = data_dict['image'] | |
image = Image.open(image_file).convert('RGB') | |
if hasattr(self, 'extra_image_processor'): | |
g_image = np.array(image) # for grounding | |
g_image = self.extra_image_processor.apply_image(g_image) | |
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() | |
data_dict['g_pixel_values'] = g_pixel_values | |
ori_width, ori_height = image.size | |
if self.pad_image_to_square: | |
image = expand2square(image, tuple(int(x * 255) | |
for x in self.image_processor.image_mean)) | |
image = self.image_processor.preprocess( | |
image, return_tensors='pt')['pixel_values'][0] | |
data_dict['pixel_values'] = image | |
# process and get masks | |
data_dict['masks'], class_id = self.decode_mask(data_dict['label']) | |
if class_id is None: | |
return self.__getitem__(0) | |
if self.gcg_format: | |
pass | |
else: | |
conversation = [] | |
for i, c_id in enumerate(class_id): | |
question = random.choice(SEG_QUESTIONS).format( | |
class_name=self.classes[c_id].lower()) | |
if i == 0: | |
question = f"""The {DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n""" + question | |
conversation.append( | |
{'input': question, 'output': random.choice(ANSWER_LIST)}) | |
data_dict.update({'conversation': conversation}) | |
else: | |
if hasattr(self.image_processor, 'crop_size'): | |
crop_size = self.image_processor.crop_size | |
else: | |
crop_size = self.image_processor.size | |
data_dict['pixel_values'] = torch.zeros(3, crop_size['height'], | |
crop_size['width']) | |
data_dict['masks'] = None | |
if self.lazy: | |
result = self.template_map_fn(data_dict) | |
data_dict.update(result) | |
result = encode_fn(data_dict, tokenizer=self.tokenizer, | |
max_length=self.max_length, with_image_token=True) | |
data_dict.update(result) | |
return data_dict | |
class ADE20kSemanticSegDataset(SemanticSegDataset): | |
def __init__(self, | |
image_folder, | |
image_processor, | |
data_path=None, | |
tokenizer=None, | |
offline_processed_text_folder=None, | |
max_dataset_length=None, | |
dataset_map_fn=None, | |
template_map_fn=None, | |
max_length=2048, | |
pad_image_to_square=False, | |
num_proc=8, | |
lazy=False, | |
repeats=1, | |
gcg_format=False, | |
num_classes_per_sample=3, | |
extra_image_processor=None): | |
super().__init__( | |
image_folder=image_folder, | |
image_processor=image_processor, | |
data_path=data_path, | |
tokenizer=tokenizer, | |
offline_processed_text_folder=offline_processed_text_folder, | |
max_dataset_length=max_dataset_length, | |
dataset_map_fn=dataset_map_fn, | |
template_map_fn=template_map_fn, | |
max_length=max_length, | |
pad_image_to_square=pad_image_to_square, | |
num_proc=num_proc, | |
lazy=lazy, | |
repeats=repeats, | |
gcg_format=gcg_format, | |
num_classes_per_sample=num_classes_per_sample, | |
extra_image_processor=extra_image_processor, | |
) | |
class COCOStuffSemanticSegDataset(SemanticSegDataset): | |
def __init__(self, | |
image_folder, | |
image_processor, | |
data_path=None, | |
tokenizer=None, | |
offline_processed_text_folder=None, | |
max_dataset_length=None, | |
dataset_map_fn=None, | |
template_map_fn=None, | |
max_length=2048, | |
pad_image_to_square=False, | |
num_proc=8, | |
lazy=False, | |
repeats=1, | |
label_path=None, | |
gcg_format=False, | |
num_classes_per_sample=3, | |
extra_image_processor=None): | |
self.label_path = label_path | |
super().__init__( | |
image_folder=image_folder, | |
image_processor=image_processor, | |
data_path=data_path, | |
tokenizer=tokenizer, | |
offline_processed_text_folder=offline_processed_text_folder, | |
max_dataset_length=max_dataset_length, | |
dataset_map_fn=dataset_map_fn, | |
template_map_fn=template_map_fn, | |
max_length=max_length, | |
pad_image_to_square=pad_image_to_square, | |
num_proc=num_proc, | |
lazy=lazy, | |
repeats=repeats, | |
gcg_format=gcg_format, | |
num_classes_per_sample=num_classes_per_sample, | |
extra_image_processor=extra_image_processor, | |
) | |
self.cocostuff_class2index = {c: i for i, c in enumerate(self.classes)} | |
def json_file_preprocess(self, data_path, image_folder): | |
# coco stuff | |
assert self.label_path is not None | |
with open(data_path, 'r') as file: | |
cocostuff_classes = [line.strip().split(": ")[-1] | |
for line in file.readlines()[1:]] | |
coco_stuff_image_dir = image_folder | |
coco_stuff_label_dir = self.label_path | |
coco_stuff_labels = glob.glob( | |
os.path.join(coco_stuff_label_dir, "*.png")) | |
coco_stuff_images = [label.replace(".png", ".jpg").replace(coco_stuff_label_dir, coco_stuff_image_dir) | |
for label in coco_stuff_labels] | |
self.classes = np.array(cocostuff_classes) | |
ret = [] | |
for image, label in zip(coco_stuff_images, coco_stuff_labels): | |
ret.append({"image": image, "label": label}) | |
return ret | |
def decode_mask(self, label_path): | |
label = np.array(Image.open(label_path)) | |
# coco stuff | |
ignored_classes = [index for class_name, | |
index in self.cocostuff_class2index.items() if "-" in class_name] | |
label = np.where(np.isin(label, ignored_classes), 255, label) | |
unique_labels = [lbl for lbl in np.unique(label) if lbl != 255] | |
if not unique_labels: | |
print("No valid label !!!") | |
return None, None | |
# only choose 1 | |
selected_labels = np.random.choice(unique_labels, min( | |
len(unique_labels), self.num_classes_per_sample), replace=False) | |
label = torch.from_numpy(label).long() | |
masks = torch.stack( | |
[label == class_id for class_id in selected_labels], dim=0) | |
return masks, selected_labels | |
class PascalPartSemanticSegDataset(SemanticSegDataset): | |
def json_file_preprocess(self, data_path, image_folder): | |
self.coco_api = COCO(data_path) | |
img_ids = self.coco_api.getImgIds() | |
all_classes = self.coco_api.loadCats(self.coco_api.getCatIds()) | |
class_map_pascal_part = {} | |
for cat in all_classes: | |
cat_main, cat_part = cat["name"].strip().split(":") | |
name = (cat_main, cat_part) | |
class_map_pascal_part[cat["id"]] = name | |
self.classes = class_map_pascal_part | |
return img_ids | |
def __getitem__(self, index): | |
index = index % self.real_len() | |
img_id = self.image_label_datas[index] | |
img_info = self.coco_api.loadImgs([img_id])[0] | |
file_name = img_info["file_name"] | |
data_dict = {} | |
image_file = os.path.join(self.image_folder, file_name) | |
image = Image.open(image_file).convert('RGB') | |
if hasattr(self, 'extra_image_processor'): | |
g_image = np.array(image) # for grounding | |
g_image = self.extra_image_processor.apply_image(g_image) | |
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() | |
data_dict['g_pixel_values'] = g_pixel_values | |
if self.pad_image_to_square: | |
image = expand2square( | |
image, tuple(int(x * 255) for x in self.image_processor.image_mean)) | |
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
data_dict['pixel_values'] = image | |
annotation_ids = self.coco_api.getAnnIds(imgIds=img_info["id"]) | |
annotations = self.coco_api.loadAnns(annotation_ids) | |
if not annotations: | |
return self.__getitem__(0) | |
sampled_anns = np.random.choice(annotations, min( | |
len(annotations), self.num_classes_per_sample), replace=False) | |
conversation = [] | |
for i, ann in enumerate(sampled_anns): | |
cat_id = ann['category_id'] | |
sampled_cls = self.classes[cat_id] | |
if isinstance(sampled_cls, tuple): | |
obj, part = sampled_cls | |
name = f"{obj} {part}" if random.random() < 0.5 else f"the {part} of the {obj}" | |
else: | |
name = sampled_cls | |
question = random.choice(SEG_QUESTIONS).format(class_name=name) | |
if i == 0: | |
question = f"""The {DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n""" + question | |
conversation.append( | |
{'input': question, 'output': random.choice(ANSWER_LIST)}) | |
masks = [self.coco_api.annToMask(ann) for ann in sampled_anns] | |
masks = np.stack(masks, axis=0) | |
masks = torch.from_numpy(masks) | |
data_dict['masks'] = masks | |
data_dict['conversation'] = conversation | |
if self.lazy: | |
result = self.template_map_fn(data_dict) | |
data_dict.update(result) | |
result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True) | |
data_dict.update(result) | |
return data_dict | |
class PacoSemanticSegDataset(PascalPartSemanticSegDataset): | |
def json_file_preprocess(self, data_path, image_folder): | |
self.coco_api = COCO(data_path) | |
all_classes = self.coco_api.loadCats(self.coco_api.getCatIds()) | |
class_map_paco = {} | |
for cat in all_classes: | |
cat_split = cat["name"].strip().split(":") | |
if len(cat_split) == 1: | |
name = cat_split[0].split("_(")[0] | |
else: | |
assert len(cat_split) == 2 | |
obj, part = cat_split | |
obj = obj.split("_(")[0] | |
part = part.split("_(")[0] | |
name = (obj, part) | |
class_map_paco[cat["id"]] = name | |
self.classes = class_map_paco | |
return self.coco_api.getImgIds() |