Vintern-1B-v3.5-Demo / projects /glamm /datasets /semantic_seg_dataset.py
fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
16.6 kB
import copy
import random
import glob
import json
import logging
import os
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from xtuner.registry import BUILDER
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class SemanticSegDataset(Dataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
offline_processed_text_folder=None,
max_dataset_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_proc=8,
lazy=False,
repeats=1,
gcg_format=False,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__()
self.gcg_format = gcg_format
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.num_classes_per_sample = num_classes_per_sample
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
reg_tokens = ['<bbox>', '<point>']
segmentation_tokens = ['[SEG]']
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
assert offline_processed_text_folder or (data_path and tokenizer)
self.lazy = lazy
self.max_length = max_length
self.dataset_map_fn = dataset_map_fn
self.template_map_fn = template_map_fn
if isinstance(self.template_map_fn, dict) and self.lazy:
_type = self.template_map_fn['type']
del self.template_map_fn['type']
self.template_map_fn = _type(**self.template_map_fn)
if offline_processed_text_folder and data_path:
print_log(
'Both `offline_processed_text_folder` and '
'`data_path` are set, and we load dataset from'
'`offline_processed_text_folder` '
f'({offline_processed_text_folder})',
logger='current',
level=logging.WARNING)
if offline_processed_text_folder is not None:
raise NotImplementedError
else:
self.image_label_datas = self.json_file_preprocess(data_path, image_folder)
self.image_folder = image_folder
if isinstance(image_processor, dict) or isinstance(image_processor, Config) or isinstance(image_processor, ConfigDict):
self.image_processor = BUILDER.build(image_processor)
else:
self.image_processor = image_processor
size = self.image_processor.crop_size
if isinstance(size, dict):
self.image_w, self.image_h = size['width'], size['height']
elif isinstance(size, int):
self.image_h, self.image_w = size, size
else:
self.image_w, self.image_h = size
self.pad_image_to_square = pad_image_to_square
self.down_ratio = 1
self.repeats = repeats
def json_file_preprocess(self, data_path, image_folder):
# ade20k
with open(data_path, 'r') as file:
ade20k_classes = json.load(file)
ade20k_image_dir = image_folder
ade20k_images = [os.path.join(ade20k_image_dir, img) for img in os.listdir(ade20k_image_dir) if
img.endswith('.jpg')]
ade20k_labels = [img.replace(".jpg", ".png").replace(
"images", "annotations") for img in ade20k_images]
self.classes = np.array(ade20k_classes)
ret = []
for image, label in zip(ade20k_images, ade20k_labels):
ret.append({"image": image, "label": label})
return ret
def __len__(self):
return len(self.image_label_datas) * self.repeats
@property
def modality_length(self):
length_list = []
for data_dict in self.image_label_datas:
length_list.append(100)
length_list = length_list * self.repeats
return length_list
def real_len(self):
return len(self.image_label_datas)
def decode_mask(self, label_path):
label = np.array(Image.open(label_path))
# ade20k
label = np.where(label == 0, 255, label - 1)
unique_labels = [lbl for lbl in np.unique(label) if lbl != 255]
if not unique_labels:
return None, None
selected_labels = np.random.choice(unique_labels, min(
len(unique_labels), self.num_classes_per_sample), replace=False)
label = torch.from_numpy(label).long()
masks = torch.stack([label == class_id for class_id in selected_labels], dim=0)
return masks, selected_labels
def __getitem__(self, index):
index = index % self.real_len()
data_dict = copy.deepcopy(self.image_label_datas[index])
assert 'image' in data_dict.keys()
if data_dict.get('image', None) is not None:
image_file = data_dict['image']
image = Image.open(image_file).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
data_dict['g_pixel_values'] = g_pixel_values
ori_width, ori_height = image.size
if self.pad_image_to_square:
image = expand2square(image, tuple(int(x * 255)
for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
data_dict['pixel_values'] = image
# process and get masks
data_dict['masks'], class_id = self.decode_mask(data_dict['label'])
if class_id is None:
return self.__getitem__(0)
if self.gcg_format:
pass
else:
conversation = []
for i, c_id in enumerate(class_id):
question = random.choice(SEG_QUESTIONS).format(
class_name=self.classes[c_id].lower())
if i == 0:
question = f"""The {DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n""" + question
conversation.append(
{'input': question, 'output': random.choice(ANSWER_LIST)})
data_dict.update({'conversation': conversation})
else:
if hasattr(self.image_processor, 'crop_size'):
crop_size = self.image_processor.crop_size
else:
crop_size = self.image_processor.size
data_dict['pixel_values'] = torch.zeros(3, crop_size['height'],
crop_size['width'])
data_dict['masks'] = None
if self.lazy:
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer,
max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class ADE20kSemanticSegDataset(SemanticSegDataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
offline_processed_text_folder=None,
max_dataset_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_proc=8,
lazy=False,
repeats=1,
gcg_format=False,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__(
image_folder=image_folder,
image_processor=image_processor,
data_path=data_path,
tokenizer=tokenizer,
offline_processed_text_folder=offline_processed_text_folder,
max_dataset_length=max_dataset_length,
dataset_map_fn=dataset_map_fn,
template_map_fn=template_map_fn,
max_length=max_length,
pad_image_to_square=pad_image_to_square,
num_proc=num_proc,
lazy=lazy,
repeats=repeats,
gcg_format=gcg_format,
num_classes_per_sample=num_classes_per_sample,
extra_image_processor=extra_image_processor,
)
class COCOStuffSemanticSegDataset(SemanticSegDataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
offline_processed_text_folder=None,
max_dataset_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_proc=8,
lazy=False,
repeats=1,
label_path=None,
gcg_format=False,
num_classes_per_sample=3,
extra_image_processor=None):
self.label_path = label_path
super().__init__(
image_folder=image_folder,
image_processor=image_processor,
data_path=data_path,
tokenizer=tokenizer,
offline_processed_text_folder=offline_processed_text_folder,
max_dataset_length=max_dataset_length,
dataset_map_fn=dataset_map_fn,
template_map_fn=template_map_fn,
max_length=max_length,
pad_image_to_square=pad_image_to_square,
num_proc=num_proc,
lazy=lazy,
repeats=repeats,
gcg_format=gcg_format,
num_classes_per_sample=num_classes_per_sample,
extra_image_processor=extra_image_processor,
)
self.cocostuff_class2index = {c: i for i, c in enumerate(self.classes)}
def json_file_preprocess(self, data_path, image_folder):
# coco stuff
assert self.label_path is not None
with open(data_path, 'r') as file:
cocostuff_classes = [line.strip().split(": ")[-1]
for line in file.readlines()[1:]]
coco_stuff_image_dir = image_folder
coco_stuff_label_dir = self.label_path
coco_stuff_labels = glob.glob(
os.path.join(coco_stuff_label_dir, "*.png"))
coco_stuff_images = [label.replace(".png", ".jpg").replace(coco_stuff_label_dir, coco_stuff_image_dir)
for label in coco_stuff_labels]
self.classes = np.array(cocostuff_classes)
ret = []
for image, label in zip(coco_stuff_images, coco_stuff_labels):
ret.append({"image": image, "label": label})
return ret
def decode_mask(self, label_path):
label = np.array(Image.open(label_path))
# coco stuff
ignored_classes = [index for class_name,
index in self.cocostuff_class2index.items() if "-" in class_name]
label = np.where(np.isin(label, ignored_classes), 255, label)
unique_labels = [lbl for lbl in np.unique(label) if lbl != 255]
if not unique_labels:
print("No valid label !!!")
return None, None
# only choose 1
selected_labels = np.random.choice(unique_labels, min(
len(unique_labels), self.num_classes_per_sample), replace=False)
label = torch.from_numpy(label).long()
masks = torch.stack(
[label == class_id for class_id in selected_labels], dim=0)
return masks, selected_labels
class PascalPartSemanticSegDataset(SemanticSegDataset):
def json_file_preprocess(self, data_path, image_folder):
self.coco_api = COCO(data_path)
img_ids = self.coco_api.getImgIds()
all_classes = self.coco_api.loadCats(self.coco_api.getCatIds())
class_map_pascal_part = {}
for cat in all_classes:
cat_main, cat_part = cat["name"].strip().split(":")
name = (cat_main, cat_part)
class_map_pascal_part[cat["id"]] = name
self.classes = class_map_pascal_part
return img_ids
def __getitem__(self, index):
index = index % self.real_len()
img_id = self.image_label_datas[index]
img_info = self.coco_api.loadImgs([img_id])[0]
file_name = img_info["file_name"]
data_dict = {}
image_file = os.path.join(self.image_folder, file_name)
image = Image.open(image_file).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
data_dict['g_pixel_values'] = g_pixel_values
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
data_dict['pixel_values'] = image
annotation_ids = self.coco_api.getAnnIds(imgIds=img_info["id"])
annotations = self.coco_api.loadAnns(annotation_ids)
if not annotations:
return self.__getitem__(0)
sampled_anns = np.random.choice(annotations, min(
len(annotations), self.num_classes_per_sample), replace=False)
conversation = []
for i, ann in enumerate(sampled_anns):
cat_id = ann['category_id']
sampled_cls = self.classes[cat_id]
if isinstance(sampled_cls, tuple):
obj, part = sampled_cls
name = f"{obj} {part}" if random.random() < 0.5 else f"the {part} of the {obj}"
else:
name = sampled_cls
question = random.choice(SEG_QUESTIONS).format(class_name=name)
if i == 0:
question = f"""The {DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n""" + question
conversation.append(
{'input': question, 'output': random.choice(ANSWER_LIST)})
masks = [self.coco_api.annToMask(ann) for ann in sampled_anns]
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
data_dict['masks'] = masks
data_dict['conversation'] = conversation
if self.lazy:
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class PacoSemanticSegDataset(PascalPartSemanticSegDataset):
def json_file_preprocess(self, data_path, image_folder):
self.coco_api = COCO(data_path)
all_classes = self.coco_api.loadCats(self.coco_api.getCatIds())
class_map_paco = {}
for cat in all_classes:
cat_split = cat["name"].strip().split(":")
if len(cat_split) == 1:
name = cat_split[0].split("_(")[0]
else:
assert len(cat_split) == 2
obj, part = cat_split
obj = obj.split("_(")[0]
part = part.split("_(")[0]
name = (obj, part)
class_map_paco[cat["id"]] = name
self.classes = class_map_paco
return self.coco_api.getImgIds()