Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,607 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import copy
import random
import glob
import json
import logging
import os
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from xtuner.registry import BUILDER
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class SemanticSegDataset(Dataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
offline_processed_text_folder=None,
max_dataset_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_proc=8,
lazy=False,
repeats=1,
gcg_format=False,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__()
self.gcg_format = gcg_format
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.num_classes_per_sample = num_classes_per_sample
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
reg_tokens = ['<bbox>', '<point>']
segmentation_tokens = ['[SEG]']
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
assert offline_processed_text_folder or (data_path and tokenizer)
self.lazy = lazy
self.max_length = max_length
self.dataset_map_fn = dataset_map_fn
self.template_map_fn = template_map_fn
if isinstance(self.template_map_fn, dict) and self.lazy:
_type = self.template_map_fn['type']
del self.template_map_fn['type']
self.template_map_fn = _type(**self.template_map_fn)
if offline_processed_text_folder and data_path:
print_log(
'Both `offline_processed_text_folder` and '
'`data_path` are set, and we load dataset from'
'`offline_processed_text_folder` '
f'({offline_processed_text_folder})',
logger='current',
level=logging.WARNING)
if offline_processed_text_folder is not None:
raise NotImplementedError
else:
self.image_label_datas = self.json_file_preprocess(data_path, image_folder)
self.image_folder = image_folder
if isinstance(image_processor, dict) or isinstance(image_processor, Config) or isinstance(image_processor, ConfigDict):
self.image_processor = BUILDER.build(image_processor)
else:
self.image_processor = image_processor
size = self.image_processor.crop_size
if isinstance(size, dict):
self.image_w, self.image_h = size['width'], size['height']
elif isinstance(size, int):
self.image_h, self.image_w = size, size
else:
self.image_w, self.image_h = size
self.pad_image_to_square = pad_image_to_square
self.down_ratio = 1
self.repeats = repeats
def json_file_preprocess(self, data_path, image_folder):
# ade20k
with open(data_path, 'r') as file:
ade20k_classes = json.load(file)
ade20k_image_dir = image_folder
ade20k_images = [os.path.join(ade20k_image_dir, img) for img in os.listdir(ade20k_image_dir) if
img.endswith('.jpg')]
ade20k_labels = [img.replace(".jpg", ".png").replace(
"images", "annotations") for img in ade20k_images]
self.classes = np.array(ade20k_classes)
ret = []
for image, label in zip(ade20k_images, ade20k_labels):
ret.append({"image": image, "label": label})
return ret
def __len__(self):
return len(self.image_label_datas) * self.repeats
@property
def modality_length(self):
length_list = []
for data_dict in self.image_label_datas:
length_list.append(100)
length_list = length_list * self.repeats
return length_list
def real_len(self):
return len(self.image_label_datas)
def decode_mask(self, label_path):
label = np.array(Image.open(label_path))
# ade20k
label = np.where(label == 0, 255, label - 1)
unique_labels = [lbl for lbl in np.unique(label) if lbl != 255]
if not unique_labels:
return None, None
selected_labels = np.random.choice(unique_labels, min(
len(unique_labels), self.num_classes_per_sample), replace=False)
label = torch.from_numpy(label).long()
masks = torch.stack([label == class_id for class_id in selected_labels], dim=0)
return masks, selected_labels
def __getitem__(self, index):
index = index % self.real_len()
data_dict = copy.deepcopy(self.image_label_datas[index])
assert 'image' in data_dict.keys()
if data_dict.get('image', None) is not None:
image_file = data_dict['image']
image = Image.open(image_file).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
data_dict['g_pixel_values'] = g_pixel_values
ori_width, ori_height = image.size
if self.pad_image_to_square:
image = expand2square(image, tuple(int(x * 255)
for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
data_dict['pixel_values'] = image
# process and get masks
data_dict['masks'], class_id = self.decode_mask(data_dict['label'])
if class_id is None:
return self.__getitem__(0)
if self.gcg_format:
pass
else:
conversation = []
for i, c_id in enumerate(class_id):
question = random.choice(SEG_QUESTIONS).format(
class_name=self.classes[c_id].lower())
if i == 0:
question = f"""The {DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n""" + question
conversation.append(
{'input': question, 'output': random.choice(ANSWER_LIST)})
data_dict.update({'conversation': conversation})
else:
if hasattr(self.image_processor, 'crop_size'):
crop_size = self.image_processor.crop_size
else:
crop_size = self.image_processor.size
data_dict['pixel_values'] = torch.zeros(3, crop_size['height'],
crop_size['width'])
data_dict['masks'] = None
if self.lazy:
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer,
max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class ADE20kSemanticSegDataset(SemanticSegDataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
offline_processed_text_folder=None,
max_dataset_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_proc=8,
lazy=False,
repeats=1,
gcg_format=False,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__(
image_folder=image_folder,
image_processor=image_processor,
data_path=data_path,
tokenizer=tokenizer,
offline_processed_text_folder=offline_processed_text_folder,
max_dataset_length=max_dataset_length,
dataset_map_fn=dataset_map_fn,
template_map_fn=template_map_fn,
max_length=max_length,
pad_image_to_square=pad_image_to_square,
num_proc=num_proc,
lazy=lazy,
repeats=repeats,
gcg_format=gcg_format,
num_classes_per_sample=num_classes_per_sample,
extra_image_processor=extra_image_processor,
)
class COCOStuffSemanticSegDataset(SemanticSegDataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
offline_processed_text_folder=None,
max_dataset_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
num_proc=8,
lazy=False,
repeats=1,
label_path=None,
gcg_format=False,
num_classes_per_sample=3,
extra_image_processor=None):
self.label_path = label_path
super().__init__(
image_folder=image_folder,
image_processor=image_processor,
data_path=data_path,
tokenizer=tokenizer,
offline_processed_text_folder=offline_processed_text_folder,
max_dataset_length=max_dataset_length,
dataset_map_fn=dataset_map_fn,
template_map_fn=template_map_fn,
max_length=max_length,
pad_image_to_square=pad_image_to_square,
num_proc=num_proc,
lazy=lazy,
repeats=repeats,
gcg_format=gcg_format,
num_classes_per_sample=num_classes_per_sample,
extra_image_processor=extra_image_processor,
)
self.cocostuff_class2index = {c: i for i, c in enumerate(self.classes)}
def json_file_preprocess(self, data_path, image_folder):
# coco stuff
assert self.label_path is not None
with open(data_path, 'r') as file:
cocostuff_classes = [line.strip().split(": ")[-1]
for line in file.readlines()[1:]]
coco_stuff_image_dir = image_folder
coco_stuff_label_dir = self.label_path
coco_stuff_labels = glob.glob(
os.path.join(coco_stuff_label_dir, "*.png"))
coco_stuff_images = [label.replace(".png", ".jpg").replace(coco_stuff_label_dir, coco_stuff_image_dir)
for label in coco_stuff_labels]
self.classes = np.array(cocostuff_classes)
ret = []
for image, label in zip(coco_stuff_images, coco_stuff_labels):
ret.append({"image": image, "label": label})
return ret
def decode_mask(self, label_path):
label = np.array(Image.open(label_path))
# coco stuff
ignored_classes = [index for class_name,
index in self.cocostuff_class2index.items() if "-" in class_name]
label = np.where(np.isin(label, ignored_classes), 255, label)
unique_labels = [lbl for lbl in np.unique(label) if lbl != 255]
if not unique_labels:
print("No valid label !!!")
return None, None
# only choose 1
selected_labels = np.random.choice(unique_labels, min(
len(unique_labels), self.num_classes_per_sample), replace=False)
label = torch.from_numpy(label).long()
masks = torch.stack(
[label == class_id for class_id in selected_labels], dim=0)
return masks, selected_labels
class PascalPartSemanticSegDataset(SemanticSegDataset):
def json_file_preprocess(self, data_path, image_folder):
self.coco_api = COCO(data_path)
img_ids = self.coco_api.getImgIds()
all_classes = self.coco_api.loadCats(self.coco_api.getCatIds())
class_map_pascal_part = {}
for cat in all_classes:
cat_main, cat_part = cat["name"].strip().split(":")
name = (cat_main, cat_part)
class_map_pascal_part[cat["id"]] = name
self.classes = class_map_pascal_part
return img_ids
def __getitem__(self, index):
index = index % self.real_len()
img_id = self.image_label_datas[index]
img_info = self.coco_api.loadImgs([img_id])[0]
file_name = img_info["file_name"]
data_dict = {}
image_file = os.path.join(self.image_folder, file_name)
image = Image.open(image_file).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
data_dict['g_pixel_values'] = g_pixel_values
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
data_dict['pixel_values'] = image
annotation_ids = self.coco_api.getAnnIds(imgIds=img_info["id"])
annotations = self.coco_api.loadAnns(annotation_ids)
if not annotations:
return self.__getitem__(0)
sampled_anns = np.random.choice(annotations, min(
len(annotations), self.num_classes_per_sample), replace=False)
conversation = []
for i, ann in enumerate(sampled_anns):
cat_id = ann['category_id']
sampled_cls = self.classes[cat_id]
if isinstance(sampled_cls, tuple):
obj, part = sampled_cls
name = f"{obj} {part}" if random.random() < 0.5 else f"the {part} of the {obj}"
else:
name = sampled_cls
question = random.choice(SEG_QUESTIONS).format(class_name=name)
if i == 0:
question = f"""The {DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n""" + question
conversation.append(
{'input': question, 'output': random.choice(ANSWER_LIST)})
masks = [self.coco_api.annToMask(ann) for ann in sampled_anns]
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
data_dict['masks'] = masks
data_dict['conversation'] = conversation
if self.lazy:
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class PacoSemanticSegDataset(PascalPartSemanticSegDataset):
def json_file_preprocess(self, data_path, image_folder):
self.coco_api = COCO(data_path)
all_classes = self.coco_api.loadCats(self.coco_api.getCatIds())
class_map_paco = {}
for cat in all_classes:
cat_split = cat["name"].strip().split(":")
if len(cat_split) == 1:
name = cat_split[0].split("_(")[0]
else:
assert len(cat_split) == 2
obj, part = cat_split
obj = obj.split("_(")[0]
part = part.split("_(")[0]
name = (obj, part)
class_map_paco[cat["id"]] = name
self.classes = class_map_paco
return self.coco_api.getImgIds() |