File size: 11,668 Bytes
0ea2c0e
35a9ed4
0ea2c0e
35a9ed4
0ea2c0e
 
 
 
 
 
 
 
8d20c43
0ea2c0e
 
 
 
 
 
 
b29876f
0ea2c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d20c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea2c0e
8d20c43
faa07dc
0ea2c0e
 
 
 
 
 
 
dc52088
dcd69bb
0ea2c0e
bdee200
19540cf
dc52088
8d20c43
5bdf407
0ea2c0e
 
 
 
 
 
 
8c2e68c
0ea2c0e
65f1afc
 
 
 
dcd69bb
0ea2c0e
 
 
 
dcd69bb
c0784bd
0ea2c0e
 
5672cc2
8d20c43
5672cc2
0ea2c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a9ed4
0ea2c0e
 
 
 
 
 
 
2d5847a
 
 
 
 
e7cfa0d
2d5847a
0ea2c0e
 
b499fae
b918a29
0ea2c0e
 
 
 
 
 
 
fe11ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8400df
910f615
f8400df
 
 
 
 
 
 
0ea2c0e
fe11ab2
9f98e4a
 
bf10c96
 
9f98e4a
bf10c96
 
9f98e4a
 
bf10c96
9f98e4a
 
 
 
 
77487c8
 
b5d5932
77487c8
4b6d32a
77487c8
 
 
 
 
 
 
 
 
 
 
c0db4f3
6ffa911
c0db4f3
 
 
 
27bc946
c0db4f3
 
 
 
 
 
 
 
 
 
 
e8de1c9
 
 
 
 
4c3c1bf
95d645e
c0db4f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags

from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
import os

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.set_default_device('cuda')


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def correct_image_orientation(image_path):
    # Mở ảnh
    image = Image.open(image_path)

    # Kiểm tra dữ liệu Exif (nếu có)
    try:
        exif = image._getexif()
        if exif is not None:
            for tag, value in exif.items():
                if ExifTags.TAGS.get(tag) == "Orientation":
                    # Sửa hướng dựa trên Orientation
                    if value == 3:
                        image = image.rotate(180, expand=True)
                    elif value == 6:
                        image = image.rotate(-90, expand=True)
                    elif value == 8:
                        image = image.rotate(90, expand=True)
                    break
    except Exception as e:
        print("Không thể xử lý Exif:", e)

    return image
    
def load_image(image_file, input_size=448, max_num=12):
    image = correct_image_orientation(image_file).convert('RGB')
    print("Image size: ", image.size)
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

model = AutoModel.from_pretrained(
    "5CD-AI/Vintern-1B-v3_5",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False)
    
@spaces.GPU
def chat(message, history):
    print("history",history)
    print("message",message)

    if len(history) != 0 and len(message["files"]) != 0:
        return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện.
We currently only support one image at the start of the context! Please start a new conversation."""
    
    if len(history) == 0 and len(message["files"]) != 0:
        if "path" in message["files"][0]:
            test_image = message["files"][0]["path"]
        else:
            test_image = message["files"][0]
        pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
    elif len(history) == 0 and len(message["files"]) == 0:
        pixel_values = None     
    elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
        test_image = history[0][0][0]
        pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
    else:
        pixel_values = None 
        
    
    generation_config = dict(max_new_tokens= 700, do_sample=False, num_beams = 3, repetition_penalty=2.5)
    
    if len(history) == 0:
        if pixel_values is not None:
            question = '<image>\n'+message["text"]
        else:
            question = message["text"]
        response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
    else:
        conv_history = []
        if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
            start_index = 1
        else:
            start_index = 0
        
        for i, chat_pair in enumerate(history[start_index:]):
            if i == 0 and start_index == 1:
                 conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
            else:
                conv_history.append(tuple(chat_pair))

            
        print("conv_history",conv_history)
        question = message["text"]
        response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
        
    print(f'User: {question}\nAssistant: {response}')

    # return response
    buffer = ""
    for new_text in response:
      buffer += new_text
      generated_text_without_prompt = buffer[:]
      time.sleep(0.02)
      yield generated_text_without_prompt

CSS ="""
#component-10 {
  height: 70dvh !important;
  transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
  border-style: solid;
  overflow: hidden;
  flex-grow: 1;
  min-width: min(160px, 100%);
  border-width: var(--block-border-width);
}

/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
  width: 100%;
  object-fit: contain;
  height: 100%;
  border-radius: 13px; /* Thêm bo góc cho ảnh */
  max-width: 50vw;     /* Giới hạn chiều rộng ảnh */
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
  user-select: text;
  text-align: left;
  height: 300px;
}
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
  border-radius: 13px;
  max-width: 50vw;
}
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
    margin: var(--size-2);
    max-height: 500px;
}
.image-preview-close-button {
  position: relative; /* Nếu cần định vị trí */
  width: 5%; /* Chiều rộng nút */
  height: 5%; /* Chiều cao nút */
  display: flex;
  justify-content: center;
  align-items: center;
  padding: 0; /* Để tránh ảnh hưởng từ padding mặc định */
  border: none; /* Tùy chọn để loại bỏ đường viền */
  background: none; /* Tùy chọn để loại bỏ nền */
}

.example-image-container.svelte-9pi8y1 {
    width: calc(var(--size-8) * 5);
    height: calc(var(--size-8) * 5);
    border-radius: var(--radius-lg);
    overflow: hidden;
    position: relative;
    margin-bottom: var(--spacing-lg);
}
"""

js = """
function forceLightTheme() {
    const url = new URL(window.location);

    // Cập nhật __theme thành light nếu giá trị không đúng
    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        // Thay đổi URL mà không tải lại trang nếu cần
        window.history.replaceState({}, '', url.href);
    }

    // Đảm bảo document luôn áp dụng theme light
    document.documentElement.setAttribute('data-theme', 'light');
}
"""
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device="cuda:0")

@spaces.GPU
def transcribe_speech(filepath):
    output = pipe(
        filepath,
        max_new_tokens=256,
        generate_kwargs={
            "task": "transcribe",
        },  
        chunk_length_s=30,
        batch_size=1,
    )
    return output["text"]
        
demo = gr.Blocks(css=CSS,js=js, theme='NoCrypt/miku')

with demo:
    chat_demo_interface = gr.ChatInterface(
        fn=chat,
        description="""**Vintern-1B-v3.5** is the latest in the Vintern series, bringing major improvements over v2 across all benchmarks. This **continuous fine-tuning Version** enhances Vietnamese capabilities while retaining strong English performance. It excels in OCR, text recognition, and Vietnam-specific document understanding.""",
        examples=[{"text": "Hãy viết một email giới thiệu sản phẩm trong ảnh.", "files":["./demo_3.jpg"]},
                  {"text": "Trích xuất các thông tin từ ảnh trả về markdown.", "files":["./demo_1.jpg"]}, 
                  {"text": "Bạn là nhân viên marketing chuyên nghiệp. Hãy viết một bài quảng cáo dài trên mạng xã hội giới thiệu về cửa hàng.", "files":["./demo_2.jpg"]},
                  {"text": "Trích xuất thông tin kiện hàng trong ảnh và trả về dạng JSON.", "files":["./demo_4.jpg"]}],
        title="❄️ Vintern-1B-v3.5 Demo ❄️",
        multimodal=True,
        css=CSS,
        js=js,
        theme='NoCrypt/miku'
    )
        
    # mic_transcribe = gr.Interface(
    #     fn=transcribe_speech,
    #     inputs=gr.Audio(sources="microphone", type="filepath", editable=False),
    #     outputs=gr.components.Textbox(),
    # )

# chat_demo_interface.queue()
demo.queue().launch()