Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,668 Bytes
0ea2c0e 35a9ed4 0ea2c0e 35a9ed4 0ea2c0e 8d20c43 0ea2c0e b29876f 0ea2c0e 8d20c43 0ea2c0e 8d20c43 faa07dc 0ea2c0e dc52088 dcd69bb 0ea2c0e bdee200 19540cf dc52088 8d20c43 5bdf407 0ea2c0e 8c2e68c 0ea2c0e 65f1afc dcd69bb 0ea2c0e dcd69bb c0784bd 0ea2c0e 5672cc2 8d20c43 5672cc2 0ea2c0e 35a9ed4 0ea2c0e 2d5847a e7cfa0d 2d5847a 0ea2c0e b499fae b918a29 0ea2c0e fe11ab2 f8400df 910f615 f8400df 0ea2c0e fe11ab2 9f98e4a bf10c96 9f98e4a bf10c96 9f98e4a bf10c96 9f98e4a 77487c8 b5d5932 77487c8 4b6d32a 77487c8 c0db4f3 6ffa911 c0db4f3 27bc946 c0db4f3 e8de1c9 4c3c1bf 95d645e c0db4f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ExifTags
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
import os
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
torch.set_default_device('cuda')
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def correct_image_orientation(image_path):
# Mở ảnh
image = Image.open(image_path)
# Kiểm tra dữ liệu Exif (nếu có)
try:
exif = image._getexif()
if exif is not None:
for tag, value in exif.items():
if ExifTags.TAGS.get(tag) == "Orientation":
# Sửa hướng dựa trên Orientation
if value == 3:
image = image.rotate(180, expand=True)
elif value == 6:
image = image.rotate(-90, expand=True)
elif value == 8:
image = image.rotate(90, expand=True)
break
except Exception as e:
print("Không thể xử lý Exif:", e)
return image
def load_image(image_file, input_size=448, max_num=12):
image = correct_image_orientation(image_file).convert('RGB')
print("Image size: ", image.size)
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
model = AutoModel.from_pretrained(
"5CD-AI/Vintern-1B-v3_5",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False)
@spaces.GPU
def chat(message, history):
print("history",history)
print("message",message)
if len(history) != 0 and len(message["files"]) != 0:
return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện.
We currently only support one image at the start of the context! Please start a new conversation."""
if len(history) == 0 and len(message["files"]) != 0:
if "path" in message["files"][0]:
test_image = message["files"][0]["path"]
else:
test_image = message["files"][0]
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
elif len(history) == 0 and len(message["files"]) == 0:
pixel_values = None
elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
test_image = history[0][0][0]
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
else:
pixel_values = None
generation_config = dict(max_new_tokens= 700, do_sample=False, num_beams = 3, repetition_penalty=2.5)
if len(history) == 0:
if pixel_values is not None:
question = '<image>\n'+message["text"]
else:
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
else:
conv_history = []
if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
start_index = 1
else:
start_index = 0
for i, chat_pair in enumerate(history[start_index:]):
if i == 0 and start_index == 1:
conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
else:
conv_history.append(tuple(chat_pair))
print("conv_history",conv_history)
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# return response
buffer = ""
for new_text in response:
buffer += new_text
generated_text_without_prompt = buffer[:]
time.sleep(0.02)
yield generated_text_without_prompt
CSS ="""
#component-10 {
height: 70dvh !important;
transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
border-style: solid;
overflow: hidden;
flex-grow: 1;
min-width: min(160px, 100%);
border-width: var(--block-border-width);
}
/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
width: 100%;
object-fit: contain;
height: 100%;
border-radius: 13px; /* Thêm bo góc cho ảnh */
max-width: 50vw; /* Giới hạn chiều rộng ảnh */
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
user-select: text;
text-align: left;
height: 300px;
}
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
border-radius: 13px;
max-width: 50vw;
}
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
margin: var(--size-2);
max-height: 500px;
}
.image-preview-close-button {
position: relative; /* Nếu cần định vị trí */
width: 5%; /* Chiều rộng nút */
height: 5%; /* Chiều cao nút */
display: flex;
justify-content: center;
align-items: center;
padding: 0; /* Để tránh ảnh hưởng từ padding mặc định */
border: none; /* Tùy chọn để loại bỏ đường viền */
background: none; /* Tùy chọn để loại bỏ nền */
}
.example-image-container.svelte-9pi8y1 {
width: calc(var(--size-8) * 5);
height: calc(var(--size-8) * 5);
border-radius: var(--radius-lg);
overflow: hidden;
position: relative;
margin-bottom: var(--spacing-lg);
}
"""
js = """
function forceLightTheme() {
const url = new URL(window.location);
// Cập nhật __theme thành light nếu giá trị không đúng
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
// Thay đổi URL mà không tải lại trang nếu cần
window.history.replaceState({}, '', url.href);
}
// Đảm bảo document luôn áp dụng theme light
document.documentElement.setAttribute('data-theme', 'light');
}
"""
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device="cuda:0")
@spaces.GPU
def transcribe_speech(filepath):
output = pipe(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
},
chunk_length_s=30,
batch_size=1,
)
return output["text"]
demo = gr.Blocks(css=CSS,js=js, theme='NoCrypt/miku')
with demo:
chat_demo_interface = gr.ChatInterface(
fn=chat,
description="""**Vintern-1B-v3.5** is the latest in the Vintern series, bringing major improvements over v2 across all benchmarks. This **continuous fine-tuning Version** enhances Vietnamese capabilities while retaining strong English performance. It excels in OCR, text recognition, and Vietnam-specific document understanding.""",
examples=[{"text": "Hãy viết một email giới thiệu sản phẩm trong ảnh.", "files":["./demo_3.jpg"]},
{"text": "Trích xuất các thông tin từ ảnh trả về markdown.", "files":["./demo_1.jpg"]},
{"text": "Bạn là nhân viên marketing chuyên nghiệp. Hãy viết một bài quảng cáo dài trên mạng xã hội giới thiệu về cửa hàng.", "files":["./demo_2.jpg"]},
{"text": "Trích xuất thông tin kiện hàng trong ảnh và trả về dạng JSON.", "files":["./demo_4.jpg"]}],
title="❄️ Vintern-1B-v3.5 Demo ❄️",
multimodal=True,
css=CSS,
js=js,
theme='NoCrypt/miku'
)
# mic_transcribe = gr.Interface(
# fn=transcribe_speech,
# inputs=gr.Audio(sources="microphone", type="filepath", editable=False),
# outputs=gr.components.Textbox(),
# )
# chat_demo_interface.queue()
demo.queue().launch() |