Spaces:
Running
on
Zero
Running
on
Zero
khang119966
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,224 +1,228 @@
|
|
|
|
1 |
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
import tempfile
|
7 |
-
import spaces
|
8 |
import gradio as gr
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import subprocess
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
trust_remote_code=True,
|
39 |
).eval().cuda()
|
|
|
40 |
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
-
model_path,
|
43 |
-
trust_remote_code = True,
|
44 |
-
)
|
45 |
-
|
46 |
-
from third_parts import VideoReader
|
47 |
-
def read_video(video_path, video_interval):
|
48 |
-
vid_frames = VideoReader(video_path)[::video_interval]
|
49 |
-
|
50 |
-
temp_dir = tempfile.mkdtemp()
|
51 |
-
os.makedirs(temp_dir, exist_ok=True)
|
52 |
-
image_paths = [] # List to store paths of saved images
|
53 |
-
|
54 |
-
for frame_idx in range(len(vid_frames)):
|
55 |
-
frame_image = vid_frames[frame_idx]
|
56 |
-
frame_image = frame_image[..., ::-1] # BGR (opencv system) to RGB (numpy system)
|
57 |
-
frame_image = Image.fromarray(frame_image)
|
58 |
-
vid_frames[frame_idx] = frame_image
|
59 |
-
|
60 |
-
# Save the frame as a .jpg file in the temporary folder
|
61 |
-
image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
|
62 |
-
frame_image.save(image_path, format="JPEG")
|
63 |
-
|
64 |
-
# Append the image path to the list
|
65 |
-
image_paths.append(image_path)
|
66 |
-
return vid_frames, image_paths
|
67 |
-
|
68 |
-
def visualize(pred_mask, image_path, work_dir):
|
69 |
-
visualizer = Visualizer()
|
70 |
-
img = cv2.imread(image_path)
|
71 |
-
visualizer.set_image(img)
|
72 |
-
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
|
73 |
-
visual_result = visualizer.get_image()
|
74 |
-
|
75 |
-
output_path = os.path.join(work_dir, os.path.basename(image_path))
|
76 |
-
cv2.imwrite(output_path, visual_result)
|
77 |
-
return output_path
|
78 |
|
79 |
@spaces.GPU
|
80 |
-
def
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
'past_text': '',
|
88 |
-
'mask_prompts': None,
|
89 |
-
'tokenizer': tokenizer,
|
90 |
-
}
|
91 |
-
return_dict = model.predict_forward(**input_dict)
|
92 |
-
print(return_dict)
|
93 |
-
answer = return_dict["prediction"] # the text format answer
|
94 |
-
|
95 |
-
seg_image = return_dict["prediction_masks"]
|
96 |
|
97 |
-
if
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
else:
|
105 |
-
|
106 |
-
|
107 |
-
@spaces.GPU(duration=80)
|
108 |
-
def video_vision(video_input_path, prompt, video_interval):
|
109 |
-
# Open the original video
|
110 |
-
cap = cv2.VideoCapture(video_input_path)
|
111 |
-
|
112 |
-
# Get original video properties
|
113 |
-
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
114 |
-
|
115 |
-
frame_skip_factor = video_interval
|
116 |
-
|
117 |
-
# Calculate new FPS
|
118 |
-
new_fps = original_fps / frame_skip_factor
|
119 |
-
|
120 |
-
vid_frames, image_paths = read_video(video_input_path, video_interval)
|
121 |
-
# create a question (<image> is a placeholder for the video frames)
|
122 |
-
question = f"<image>{prompt}"
|
123 |
-
result = model.predict_forward(
|
124 |
-
video=vid_frames,
|
125 |
-
text=question,
|
126 |
-
tokenizer=tokenizer,
|
127 |
-
)
|
128 |
-
prediction = result['prediction']
|
129 |
-
print(prediction)
|
130 |
-
|
131 |
-
if '[SEG]' in prediction and Visualizer is not None:
|
132 |
-
_seg_idx = 0
|
133 |
-
pred_masks = result['prediction_masks'][_seg_idx]
|
134 |
-
seg_frames = []
|
135 |
-
for frame_idx in range(len(vid_frames)):
|
136 |
-
pred_mask = pred_masks[frame_idx]
|
137 |
-
temp_dir = tempfile.mkdtemp()
|
138 |
-
os.makedirs(temp_dir, exist_ok=True)
|
139 |
-
seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
|
140 |
-
seg_frames.append(seg_frame)
|
141 |
-
|
142 |
-
output_video = "output_video.mp4"
|
143 |
-
|
144 |
-
# Read the first image to get the size (resolution)
|
145 |
-
frame = cv2.imread(seg_frames[0])
|
146 |
-
height, width, layers = frame.shape
|
147 |
-
|
148 |
-
# Define the video codec and create VideoWriter object
|
149 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
|
150 |
-
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
|
151 |
-
|
152 |
-
# Iterate over the image paths and write to the video
|
153 |
-
for img_path in seg_frames:
|
154 |
-
frame = cv2.imread(img_path)
|
155 |
-
video.write(frame)
|
156 |
-
|
157 |
-
# Release the video writer
|
158 |
-
video.release()
|
159 |
-
|
160 |
-
print(f"Video created successfully at {output_video}")
|
161 |
-
|
162 |
-
return result['prediction'], output_video
|
163 |
-
|
164 |
-
else:
|
165 |
-
return result['prediction'], None
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
# Gradio UI
|
170 |
-
|
171 |
-
with gr.Blocks(analytics_enabled=False) as demo:
|
172 |
-
with gr.Column():
|
173 |
-
gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
|
174 |
-
gr.HTML("""
|
175 |
-
<div style="display:flex;column-gap:4px;">
|
176 |
-
<a href="https://github.com/magic-research/Sa2VA">
|
177 |
-
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
178 |
-
</a>
|
179 |
-
<a href="https://arxiv.org/abs/2501.04001">
|
180 |
-
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
|
181 |
-
</a>
|
182 |
-
<a href="https://huggingface.co/spaces/fffiloni/Sa2VA-simple-demo?duplicate=true">
|
183 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
|
184 |
-
</a>
|
185 |
-
<a href="https://huggingface.co/fffiloni">
|
186 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
|
187 |
-
</a>
|
188 |
-
</div>
|
189 |
-
""")
|
190 |
-
with gr.Tab("Single Image"):
|
191 |
-
with gr.Row():
|
192 |
-
with gr.Column():
|
193 |
-
image_input = gr.Image(label="Image IN", type="filepath")
|
194 |
-
with gr.Row():
|
195 |
-
instruction = gr.Textbox(label="Instruction", scale=4)
|
196 |
-
submit_image_btn = gr.Button("Submit", scale=1)
|
197 |
-
with gr.Column():
|
198 |
-
output_res = gr.Textbox(label="Response")
|
199 |
-
output_image = gr.Image(label="Segmentation", type="numpy")
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
fn = video_vision,
|
220 |
-
inputs = [video_input, vid_instruction, frame_interval],
|
221 |
-
outputs = [vid_output_res, output_video]
|
222 |
-
)
|
223 |
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
import spaces
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchvision.transforms as T
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision.transforms.functional import InterpolationMode
|
12 |
+
from transformers import AutoModel, AutoTokenizer
|
13 |
+
|
14 |
+
from threading import Thread
|
15 |
+
import re
|
16 |
+
import time
|
17 |
+
from PIL import Image
|
18 |
+
import torch
|
19 |
+
import spaces
|
20 |
import subprocess
|
21 |
+
import os
|
22 |
+
|
23 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
24 |
+
|
25 |
+
torch.set_default_device('cuda')
|
26 |
+
|
27 |
+
|
28 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
29 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
30 |
+
|
31 |
+
def build_transform(input_size):
|
32 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
33 |
+
transform = T.Compose([
|
34 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
35 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
36 |
+
T.ToTensor(),
|
37 |
+
T.Normalize(mean=MEAN, std=STD)
|
38 |
+
])
|
39 |
+
return transform
|
40 |
+
|
41 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
42 |
+
best_ratio_diff = float('inf')
|
43 |
+
best_ratio = (1, 1)
|
44 |
+
area = width * height
|
45 |
+
for ratio in target_ratios:
|
46 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
47 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
48 |
+
if ratio_diff < best_ratio_diff:
|
49 |
+
best_ratio_diff = ratio_diff
|
50 |
+
best_ratio = ratio
|
51 |
+
elif ratio_diff == best_ratio_diff:
|
52 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
53 |
+
best_ratio = ratio
|
54 |
+
return best_ratio
|
55 |
+
|
56 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
57 |
+
orig_width, orig_height = image.size
|
58 |
+
aspect_ratio = orig_width / orig_height
|
59 |
+
|
60 |
+
# calculate the existing image aspect ratio
|
61 |
+
target_ratios = set(
|
62 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
63 |
+
i * j <= max_num and i * j >= min_num)
|
64 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
65 |
+
|
66 |
+
# find the closest aspect ratio to the target
|
67 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
68 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
69 |
+
|
70 |
+
# calculate the target width and height
|
71 |
+
target_width = image_size * target_aspect_ratio[0]
|
72 |
+
target_height = image_size * target_aspect_ratio[1]
|
73 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
74 |
+
|
75 |
+
# resize the image
|
76 |
+
resized_img = image.resize((target_width, target_height))
|
77 |
+
processed_images = []
|
78 |
+
for i in range(blocks):
|
79 |
+
box = (
|
80 |
+
(i % (target_width // image_size)) * image_size,
|
81 |
+
(i // (target_width // image_size)) * image_size,
|
82 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
83 |
+
((i // (target_width // image_size)) + 1) * image_size
|
84 |
+
)
|
85 |
+
# split the image
|
86 |
+
split_img = resized_img.crop(box)
|
87 |
+
processed_images.append(split_img)
|
88 |
+
assert len(processed_images) == blocks
|
89 |
+
if use_thumbnail and len(processed_images) != 1:
|
90 |
+
thumbnail_img = image.resize((image_size, image_size))
|
91 |
+
processed_images.append(thumbnail_img)
|
92 |
+
return processed_images
|
93 |
+
|
94 |
+
def load_image(image_file, input_size=448, max_num=12):
|
95 |
+
image = Image.open(image_file).convert('RGB')
|
96 |
+
transform = build_transform(input_size=input_size)
|
97 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
98 |
+
pixel_values = [transform(image) for image in images]
|
99 |
+
pixel_values = torch.stack(pixel_values)
|
100 |
+
return pixel_values
|
101 |
+
|
102 |
+
model = AutoModel.from_pretrained(
|
103 |
+
"5CD-AI/Vintern-3B-beta",
|
104 |
+
torch_dtype=torch.bfloat16,
|
105 |
+
low_cpu_mem_usage=True,
|
106 |
trust_remote_code=True,
|
107 |
).eval().cuda()
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-3B-beta", trust_remote_code=True, use_fast=False)
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
@spaces.GPU
|
112 |
+
def chat(message, history):
|
113 |
+
print("history",history)
|
114 |
+
print("message",message)
|
115 |
+
|
116 |
+
if len(history) != 0 and len(message["files"]) != 0:
|
117 |
+
return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện.
|
118 |
+
We currently only support one image at the start of the context! Please start a new conversation."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
if len(history) == 0 and len(message["files"]) != 0:
|
121 |
+
test_image = message["files"][0]["path"]
|
122 |
+
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
|
123 |
+
elif len(history) == 0 and len(message["files"]) == 0:
|
124 |
+
pixel_values = None
|
125 |
+
elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
|
126 |
+
test_image = history[0][0][0]
|
127 |
+
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda()
|
128 |
else:
|
129 |
+
pixel_values = None
|
130 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
generation_config = dict(max_new_tokens= 512, do_sample=False, num_beams = 3, repetition_penalty=2.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
if len(history) == 0:
|
135 |
+
if pixel_values is not None:
|
136 |
+
question = '<image>\n'+message["text"]
|
137 |
+
else:
|
138 |
+
question = message["text"]
|
139 |
+
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
140 |
+
else:
|
141 |
+
conv_history = []
|
142 |
+
if history[0][0][0] is not None and os.path.isfile(history[0][0][0]):
|
143 |
+
start_index = 1
|
144 |
+
else:
|
145 |
+
start_index = 0
|
146 |
+
|
147 |
+
for i, chat_pair in enumerate(history[start_index:]):
|
148 |
+
if i == 0 and start_index == 1:
|
149 |
+
conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]]))
|
150 |
+
else:
|
151 |
+
conv_history.append(tuple(chat_pair))
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
|
154 |
+
print("conv_history",conv_history)
|
155 |
+
question = message["text"]
|
156 |
+
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
|
157 |
+
|
158 |
+
print(f'User: {question}\nAssistant: {response}')
|
159 |
+
|
160 |
+
return response
|
161 |
+
# buffer = ""
|
162 |
+
# for new_text in response:
|
163 |
+
# buffer += new_text
|
164 |
+
# generated_text_without_prompt = buffer[:]
|
165 |
+
# time.sleep(0.005)
|
166 |
+
# yield generated_text_without_prompt
|
167 |
+
|
168 |
+
CSS ="""
|
169 |
+
# @media only screen and (max-width: 600px){
|
170 |
+
# #component-3 {
|
171 |
+
# height: 90dvh !important;
|
172 |
+
# transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
|
173 |
+
# border-style: solid;
|
174 |
+
# overflow: hidden;
|
175 |
+
# flex-grow: 1;
|
176 |
+
# min-width: min(160px, 100%);
|
177 |
+
# border-width: var(--block-border-width);
|
178 |
+
# }
|
179 |
+
# }
|
180 |
+
#component-3 {
|
181 |
+
height: 50dvh !important;
|
182 |
+
transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
|
183 |
+
border-style: solid;
|
184 |
+
overflow: hidden;
|
185 |
+
flex-grow: 1;
|
186 |
+
min-width: min(160px, 100%);
|
187 |
+
border-width: var(--block-border-width);
|
188 |
+
}
|
189 |
+
/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
|
190 |
+
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
|
191 |
+
width: 100%;
|
192 |
+
object-fit: contain;
|
193 |
+
height: 100%;
|
194 |
+
border-radius: 13px; /* Thêm bo góc cho ảnh */
|
195 |
+
max-width: 50vw; /* Giới hạn chiều rộng ảnh */
|
196 |
+
}
|
197 |
+
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
|
198 |
+
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
|
199 |
+
user-select: text;
|
200 |
+
text-align: left;
|
201 |
+
height: 300px;
|
202 |
+
}
|
203 |
+
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
|
204 |
+
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
|
205 |
+
border-radius: 13px;
|
206 |
+
max-width: 50vw;
|
207 |
+
}
|
208 |
+
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
|
209 |
+
margin: var(--size-2);
|
210 |
+
max-height: 500px;
|
211 |
+
}
|
212 |
+
"""
|
213 |
+
|
214 |
+
|
215 |
+
demo = gr.ChatInterface(
|
216 |
+
fn=chat,
|
217 |
+
description="""Try [Vintern-3B-beta](https://huggingface.co/5CD-AI/Vintern-3B-beta) in this demo. Vintern-3B-beta consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
|
218 |
+
Bias, Risks, and Limitations
|
219 |
+
The model might have biases because it learned from data that could be biased.
|
220 |
+
Users should be cautious of these possible biases when using the model.""",
|
221 |
+
examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]},
|
222 |
+
{"text": "Trích xuất các thông tin từ ảnh.", "files":["./demo_1.jpg"]},
|
223 |
+
{"text": "Mô tả hình ảnh một cách chi tiết.", "files":["./demo_2.jpg"]}],
|
224 |
+
title="❄️ Vintern-3B-beta Test ❄️",
|
225 |
+
multimodal=True,
|
226 |
+
css=CSS
|
227 |
+
)
|
228 |
+
demo.queue().launch()
|