File size: 5,150 Bytes
3d10a5a
54ad4a5
 
 
 
 
 
41db68b
3d10a5a
54ad4a5
3d10a5a
 
 
 
54ad4a5
 
41db68b
594067e
41db68b
594067e
41db68b
 
 
54ad4a5
 
 
 
 
 
41db68b
54ad4a5
 
 
 
 
41db68b
54ad4a5
 
 
 
 
 
41db68b
5c3c11c
54ad4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41db68b
 
 
 
 
 
 
54ad4a5
 
594067e
54ad4a5
 
07cb4fb
54ad4a5
 
 
 
 
 
 
594067e
54ad4a5
 
 
 
 
 
41db68b
 
54ad4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
title: codebleu
tags:
- evaluate
- metric
- code
- codebleu
description: "Unofficial `CodeBLEU` implementation that supports Linux, MacOS and Windows."
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
---

# Metric Card for codebleu

This repository contains an unofficial `CodeBLEU` implementation that supports `Linux`, `MacOS` and `Windows`. It is available through `PyPI` and the `evaluate` library.

Available for: `Python`, `C`, `C#`, `C++`, `Java`, `JavaScript`, `PHP`, `Go`, `Ruby`.

---

The code is based on the original [CodeXGLUE/CodeBLEU](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU) and updated version by [XLCoST/CodeBLEU](https://github.com/reddy-lab-code-research/XLCoST/tree/main/code/translation/evaluator/CodeBLEU).  It has been refactored, tested, built for macOS and Windows, and multiple improvements have been made to enhance usability.

## Metric Description

> An ideal evaluation metric should consider the grammatical correctness and the logic correctness.
> We propose weighted n-gram match and syntactic AST match to measure grammatical correctness, and introduce semantic data-flow match to calculate logic correctness.
> ![CodeBLEU](CodeBLEU.jpg)  
[from [CodeXGLUE](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU) repo]

In a nutshell, `CodeBLEU` is a weighted combination of `n-gram match (BLEU)`, `weighted n-gram match (BLEU-weighted)`, `AST match` and `data-flow match` scores.

The metric has shown higher correlation with human evaluation than `BLEU` and `accuracy` metrics.


## How to Use

### Inputs

- `refarences` (`list[str]` or `list[list[str]]`): reference code
- `predictions` (`list[str]`) predicted code
- `lang` (`str`): code language, see `codebleu.AVAILABLE_LANGS` for available languages (python, c_sharp c, cpp, javascript, java, php, go and ruby at the moment)
- `weights` (`tuple[float,float,float,float]`): weights of the `ngram_match`, `weighted_ngram_match`, `syntax_match`, and `dataflow_match` respectively, defaults to `(0.25, 0.25, 0.25, 0.25)`
- `tokenizer` (`callable`): to split code string to tokens, defaults to `s.split()`


### Output Values

[//]: # (*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*)

[//]: # (*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*)

The metric outputs the `dict[str, float]` with following fields:
- `codebleu`: the final `CodeBLEU` score
- `ngram_match_score`: `ngram_match` score (BLEU)
- `weighted_ngram_match_score`: `weighted_ngram_match` score (BLEU-weighted)
- `syntax_match_score`: `syntax_match` score (AST match)
- `dataflow_match_score`: `dataflow_match` score

Each of the scores is in range `[0, 1]`, where `1` is the best score.


### Examples

[//]: # (*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*)

Using pip package (`pip install codebleu`):
```python
from codebleu import calc_codebleu

prediction = "def add ( a , b ) :\n return a + b"
reference = "def sum ( first , second ) :\n return second + first"

result = calc_codebleu([reference], [prediction], lang="python", weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None)
print(result)
{
  'codebleu': 0.5537, 
  'ngram_match_score': 0.1041, 
  'weighted_ngram_match_score': 0.1109, 
  'syntax_match_score': 1.0, 
  'dataflow_match_score': 1.0
}
```

Or using `evaluate` library (`codebleu` package required):
```python
import evaluate
metric = evaluate.load("k4black/codebleu")

prediction = "def add ( a , b ) :\n return a + b"
reference = "def sum ( first , second ) :\n return second + first"

result = metric.compute([reference], [prediction], lang="python", weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None)
```

Note: `lang` is required;


## Limitations and Bias

[//]: # (*Note any known limitations or biases that the metric has, with links and references if possible.*)

This library requires `so` file compilation with tree-sitter, so it is platform dependent.  
Currently available for `Linux` (manylinux), `MacOS` and `Windows` with Python 3.8+.


## Citation
```bibtex
@misc{ren2020codebleu,
      title={CodeBLEU: a Method for Automatic Evaluation of Code Synthesis}, 
      author={Shuo Ren and Daya Guo and Shuai Lu and Long Zhou and Shujie Liu and Duyu Tang and Neel Sundaresan and Ming Zhou and Ambrosio Blanco and Shuai Ma},
      year={2020},
      eprint={2009.10297},
      archivePrefix={arXiv},
      primaryClass={cs.SE}
}
```

## Further References

The source code is available at GitHub [k4black/codebleu](https://github.com/k4black/codebleu) repository.