github-actions commited on
Commit
54ad4a5
·
1 Parent(s): 3d10a5a

Auto files update [main]

Browse files
Files changed (5) hide show
  1. README.md +116 -6
  2. app.py +6 -0
  3. codebleu.py +124 -0
  4. requirements.txt +2 -0
  5. tests.py +17 -0
README.md CHANGED
@@ -1,12 +1,122 @@
1
  ---
2
- title: Codebleu
3
- emoji: 🐠
4
- colorFrom: purple
5
- colorTo: blue
 
 
 
6
  sdk: gradio
7
- sdk_version: 3.35.2
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: codebleu
3
+ tags:
4
+ - evaluate
5
+ - metric
6
+ - code
7
+ - codebleu
8
+ description: "Unofficial `CodeBLEU` implementation with Linux and MacOS supports available with PyPI and HF HUB."
9
  sdk: gradio
10
+ sdk_version: 3.19.1
11
  app_file: app.py
12
  pinned: false
13
  ---
14
 
15
+ # Metric Card for codebleu
16
+
17
+ ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
+
19
+ ## Metric Description
20
+ Unofficial `CodeBLEU` implementation with Linux and MacOS supports available with PyPI and HF HUB.
21
+
22
+ > An ideal evaluation metric should consider the grammatical correctness and the logic correctness.
23
+ > We propose weighted n-gram match and syntactic AST match to measure grammatical correctness, and introduce semantic data-flow match to calculate logic correctness.
24
+ > ![CodeBLEU](CodeBLEU.jpg)
25
+ (from [CodeXGLUE](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU) repo)
26
+
27
+ In a nutshell, `CodeBLEU` is a weighted combination of `n-gram match (BLEU)`, `weighted n-gram match (BLEU-weighted)`, `AST match` and `data-flow match` scores.
28
+
29
+ The metric has shown higher correlation with human evaluation than `BLEU` and `accuracy` metrics.
30
+
31
+ ## How to Use
32
+ *Give general statement of how to use the metric*
33
+
34
+ *Provide simplest possible example for using the metric*
35
+
36
+ ### Inputs
37
+
38
+ - `refarences` (`list[str]` or `list[list[str]]`): reference code
39
+ - `predictions` (`list[str]`) predicted code
40
+ - `lang` (`str`): code language, see `codebleu.AVAILABLE_LANGS` for available languages (python, c_sharp, java at the moment)
41
+ - `weights` (tuple[float,float,float,float]): weights of the `ngram_match`, `weighted_ngram_match`, `syntax_match`, and `dataflow_match` respectively, defaults to `(0.25, 0.25, 0.25, 0.25)`
42
+ - `tokenizer` (`callable`): to split code string to tokens, defaults to `s.split()`
43
+
44
+
45
+ ### Output Values
46
+
47
+ [//]: # (*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*)
48
+
49
+ [//]: # (*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*)
50
+
51
+ The metric outputs the `dict[str, float]` with following fields:
52
+ - `codebleu`: the final `CodeBLEU` score
53
+ - `ngram_match_score`: `ngram_match` score (BLEU)
54
+ - `weighted_ngram_match_score`: `weighted_ngram_match` score (BLEU-weighted)
55
+ - `syntax_match_score`: `syntax_match` score (AST match)
56
+ - `dataflow_match_score`: `dataflow_match` score
57
+
58
+ Each of the scores is in range `[0, 1]`, where `1` is the best score.
59
+
60
+
61
+ ### Examples
62
+
63
+ [//]: # (*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*)
64
+
65
+ Using pip package (`pip install codebleu`):
66
+ ```python
67
+ from codebleu import calc_codebleu
68
+
69
+ prediction = "def add ( a , b ) :\n return a + b"
70
+ reference = "def sum ( first , second ) :\n return second + first"
71
+
72
+ result = calc_codebleu([reference], [prediction], lang="python", weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None)
73
+ print(result)
74
+ # {
75
+ # 'codebleu': 0.5537,
76
+ # 'ngram_match_score': 0.1041,
77
+ # 'weighted_ngram_match_score': 0.1109,
78
+ # 'syntax_match_score': 1.0,
79
+ # 'dataflow_match_score': 1.0
80
+ # }
81
+ ```
82
+
83
+ Or using `evaluate` library (package required):
84
+ ```python
85
+ import evaluate
86
+ metric = evaluate.load("dvitel/codebleu")
87
+
88
+ prediction = "def add ( a , b ) :\n return a + b"
89
+ reference = "def sum ( first , second ) :\n return second + first"
90
+
91
+ result = metric.compute([reference], [prediction], lang="python", weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None)
92
+ ```
93
+
94
+ Note: `language` is required;
95
+
96
+
97
+ ## Limitations and Bias
98
+
99
+ [//]: # (*Note any known limitations or biases that the metric has, with links and references if possible.*)
100
+
101
+ As this library require `so` file compilation it is platform dependent.
102
+
103
+ Currently available for Linux (manylinux) and MacOS on Python 3.8+.
104
+
105
+
106
+ ## Citation
107
+ ```bibtex
108
+ @misc{ren2020codebleu,
109
+ title={CodeBLEU: a Method for Automatic Evaluation of Code Synthesis},
110
+ author={Shuo Ren and Daya Guo and Shuai Lu and Long Zhou and Shujie Liu and Duyu Tang and Neel Sundaresan and Ming Zhou and Ambrosio Blanco and Shuai Ma},
111
+ year={2020},
112
+ eprint={2009.10297},
113
+ archivePrefix={arXiv},
114
+ primaryClass={cs.SE}
115
+ }
116
+ ```
117
+
118
+ ## Further References
119
+
120
+ This implementation is Based on original [CodeXGLUE/CodeBLEU](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU) code -- refactored, build for macos, tested and fixed multiple crutches to make it more usable.
121
+
122
+ The source code is available at GitHub [k4black/codebleu](https://github.com/k4black/codebleu) repository.
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import evaluate
2
+ from evaluate.utils import launch_gradio_widget
3
+
4
+
5
+ module = evaluate.load("k4black/codebleu")
6
+ launch_gradio_widget(module)
codebleu.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """TODO: Add a description here."""
15
+
16
+ import evaluate
17
+ import datasets
18
+ from codebleu import calc_codebleu
19
+
20
+
21
+ # TODO: Add BibTeX citation
22
+ _CITATION = """\
23
+ @misc{ren2020codebleu,
24
+ title={CodeBLEU: a Method for Automatic Evaluation of Code Synthesis},
25
+ author={Shuo Ren and Daya Guo and Shuai Lu and Long Zhou and Shujie Liu and Duyu Tang and Neel Sundaresan and Ming Zhou and Ambrosio Blanco and Shuai Ma},
26
+ year={2020},
27
+ eprint={2009.10297},
28
+ archivePrefix={arXiv},
29
+ primaryClass={cs.SE}
30
+ }
31
+ """
32
+
33
+ # TODO: Add description of the module here
34
+ _DESCRIPTION = """\
35
+ Unofficial `CodeBLEU` implementation with Linux and MacOS supports available with PyPI and HF HUB.
36
+
37
+ Based on original [CodeXGLUE/CodeBLEU](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU) code -- refactored, build for macos, tested and fixed multiple crutches to make it more usable.
38
+ """
39
+
40
+
41
+ # TODO: Add description of the arguments of the module here
42
+ _KWARGS_DESCRIPTION = """
43
+ Calculate a weighted combination of `n-gram match (BLEU)`, `weighted n-gram match (BLEU-weighted)`, `AST match` and `data-flow match` scores.
44
+
45
+ Args:
46
+ predictions: list of predictions to score. Each predictions
47
+ should be a string with tokens separated by spaces.
48
+ references: list of reference for each prediction. Each
49
+ reference should be a string with tokens separated by spaces.
50
+ language: programming language in ['java','js','c_sharp','php','go','python','ruby'].
51
+ weights: tuple of 4 floats to use as weights for scores. Defaults to (0.25, 0.25, 0.25, 0.25).
52
+ Returns:
53
+ codebleu: resulting `CodeBLEU` score,
54
+ ngram_match_score: resulting `n-gram match (BLEU)` score,
55
+ weighted_ngram_match_score: resulting `weighted n-gram match (BLEU-weighted)` score,
56
+ syntax_match_score: resulting `AST match` score,
57
+ dataflow_match_score: resulting `data-flow match` score,
58
+ Examples:
59
+ >>> metric = evaluate.load("k4black/codebleu")
60
+ >>> ref = "def sum ( first , second ) :\n return second + first"
61
+ >>> pred = "def add ( a , b ) :\n return a + b"
62
+ >>> results = metric.compute(references=[ref], predictions=[pred], language="python")
63
+ >>> print(results)
64
+ """
65
+
66
+
67
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
68
+ class codebleu(evaluate.Metric):
69
+ """CodeBLEU metric from CodexGLUE"""
70
+
71
+ def _info(self):
72
+ # TODO: Specifies the evaluate.EvaluationModuleInfo object
73
+ return evaluate.MetricInfo(
74
+ # This is the description that will appear on the modules page.
75
+ module_type="metric",
76
+ description=_DESCRIPTION,
77
+ citation=_CITATION,
78
+ inputs_description=_KWARGS_DESCRIPTION,
79
+ # This defines the format of each prediction and reference
80
+ features=[
81
+ datasets.Features(
82
+ {
83
+ "predictions": datasets.Value("string", id="sequence"),
84
+ "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
85
+ # "lang": datasets.Value("string"),
86
+ # "weights": datasets.Value("string"),
87
+ # "tokenizer": datasets.Value("string"),
88
+ }
89
+ ),
90
+ datasets.Features(
91
+ {
92
+ "predictions": datasets.Value("string", id="sequence"),
93
+ "references": datasets.Value("string", id="sequence"),
94
+ # "lang": datasets.Value("string"),
95
+ # "weights": datasets.Value("string"),
96
+ # "tokenizer": datasets.Value("string"),
97
+ }
98
+ ),
99
+ ],
100
+ # Homepage of the module for documentation
101
+ homepage="https://github.com/k4black/codebleu",
102
+ # Additional links to the codebase or references
103
+ codebase_urls=["https://github.com/k4black/codebleu"],
104
+ reference_urls=[
105
+ "https://github.com/k4black/codebleu",
106
+ "https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator",
107
+ "https://arxiv.org/abs/2009.10297",
108
+ ],
109
+ )
110
+
111
+ def _download_and_prepare(self, dl_manager):
112
+ """Optional: download external resources useful to compute the scores"""
113
+ # TODO: Download external resources if needed
114
+ pass
115
+
116
+ def _compute(self, predictions, references, lang, weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None):
117
+ """Returns the scores"""
118
+ return calc_codebleu(
119
+ references=references,
120
+ predictions=predictions,
121
+ lang=lang,
122
+ weights=weights,
123
+ tokenizer=tokenizer,
124
+ )
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ git+https://github.com/huggingface/evaluate@main
2
+ codebleu
tests.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ test_cases = [
2
+ {
3
+ "predictions": [0, 0],
4
+ "references": [1, 1],
5
+ "result": {"metric_score": 0}
6
+ },
7
+ {
8
+ "predictions": [1, 1],
9
+ "references": [1, 1],
10
+ "result": {"metric_score": 1}
11
+ },
12
+ {
13
+ "predictions": [1, 0],
14
+ "references": [1, 1],
15
+ "result": {"metric_score": 0.5}
16
+ }
17
+ ]