juliuserictuliao commited on
Commit
4ac7722
·
verified ·
1 Parent(s): 9104ae6

tagalog language

Browse files
Files changed (1) hide show
  1. app.py +26 -12
app.py CHANGED
@@ -1,34 +1,48 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from transformers import pipeline, VitsModel, VitsTokenizer
 
 
 
5
 
6
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
7
 
8
  # load speech translation checkpoint
9
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
10
 
11
- # load text-to-speech checkpoint
12
- model = VitsModel.from_pretrained('facebook/mms-tts-tgl').to(device)
13
- tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-tgl')
 
 
 
 
 
 
 
 
 
 
14
 
15
- target_dtype = np.int16
16
- max_range = np.iinfo(target_dtype).max
17
 
18
  def translate(audio):
19
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": 'tagalog'})
 
20
  return outputs["text"]
21
 
 
22
  def synthesise(text):
23
- input_ids = tokenizer(text, return_tensors="pt")["input_ids"].to(device)
24
- with torch.no_grad():
25
- outputs = model(input_ids)
26
- return outputs["waveform"].squeeze().cpu()
 
27
 
28
  def speech_to_speech_translation(audio):
29
  translated_text = translate(audio)
30
  synthesised_speech = synthesise(translated_text)
31
- synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
32
  return 16000, synthesised_speech
33
 
34
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
+ from datasets import load_dataset
5
+
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
+ # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
+
17
+
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+
20
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
+
23
+ model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
24
+ tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl")
25
+
26
+
27
 
 
 
28
 
29
  def translate(audio):
30
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "tagalog"})
31
+ print(outputs["text"])
32
  return outputs["text"]
33
 
34
+
35
  def synthesise(text):
36
+ inputs = processor(text=text, return_tensors="pt")
37
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
38
+ return speech.cpu()
39
+
40
+
41
 
42
  def speech_to_speech_translation(audio):
43
  translated_text = translate(audio)
44
  synthesised_speech = synthesise(translated_text)
45
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
46
  return 16000, synthesised_speech
47
 
48