juliuserictuliao
commited on
tagalog language
Browse files
app.py
CHANGED
@@ -1,34 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from
|
|
|
|
|
|
|
5 |
|
6 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
# load speech translation checkpoint
|
9 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
10 |
|
11 |
-
# load text-to-speech checkpoint
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
target_dtype = np.int16
|
16 |
-
max_range = np.iinfo(target_dtype).max
|
17 |
|
18 |
def translate(audio):
|
19 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":
|
|
|
20 |
return outputs["text"]
|
21 |
|
|
|
22 |
def synthesise(text):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
def speech_to_speech_translation(audio):
|
29 |
translated_text = translate(audio)
|
30 |
synthesised_speech = synthesise(translated_text)
|
31 |
-
synthesised_speech = (synthesised_speech.numpy() *
|
32 |
return 16000, synthesised_speech
|
33 |
|
34 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
+
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
+
|
17 |
+
|
18 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
+
|
20 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
+
|
23 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl")
|
25 |
+
|
26 |
+
|
27 |
|
|
|
|
|
28 |
|
29 |
def translate(audio):
|
30 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "tagalog"})
|
31 |
+
print(outputs["text"])
|
32 |
return outputs["text"]
|
33 |
|
34 |
+
|
35 |
def synthesise(text):
|
36 |
+
inputs = processor(text=text, return_tensors="pt")
|
37 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
38 |
+
return speech.cpu()
|
39 |
+
|
40 |
+
|
41 |
|
42 |
def speech_to_speech_translation(audio):
|
43 |
translated_text = translate(audio)
|
44 |
synthesised_speech = synthesise(translated_text)
|
45 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
46 |
return 16000, synthesised_speech
|
47 |
|
48 |
|