juliuserictuliao
commited on
tagalog language
Browse files
app.py
CHANGED
@@ -1,42 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from
|
5 |
-
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":
|
26 |
-
print(outputs["text"])
|
27 |
return outputs["text"]
|
28 |
|
29 |
-
|
30 |
def synthesise(text):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
def speech_to_speech_translation(audio):
|
37 |
translated_text = translate(audio)
|
38 |
synthesised_speech = synthesise(translated_text)
|
39 |
-
synthesised_speech = (synthesised_speech.numpy() *
|
40 |
return 16000, synthesised_speech
|
41 |
|
42 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from transformers import pipeline, VitsModel, VitsTokenizer
|
|
|
|
|
|
|
5 |
|
6 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
# load speech translation checkpoint
|
9 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
10 |
|
11 |
+
# load text-to-speech checkpoint
|
12 |
+
model = VitsModel.from_pretrained('facebook/mms-tts-tgl').to(device)
|
13 |
+
tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-tgl')
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
target_dtype = np.int16
|
16 |
+
max_range = np.iinfo(target_dtype).max
|
17 |
|
18 |
def translate(audio):
|
19 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": 'tagalog'})
|
|
|
20 |
return outputs["text"]
|
21 |
|
|
|
22 |
def synthesise(text):
|
23 |
+
input_ids = tokenizer(text, return_tensors="pt")["input_ids"].to(device)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(input_ids)
|
26 |
+
return outputs["waveform"].squeeze().cpu()
|
27 |
|
28 |
def speech_to_speech_translation(audio):
|
29 |
translated_text = translate(audio)
|
30 |
synthesised_speech = synthesise(translated_text)
|
31 |
+
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
|
32 |
return 16000, synthesised_speech
|
33 |
|
34 |
|