File size: 26,790 Bytes
d9076ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import concurrent
import functools
import logging
import os
import random
import re
import traceback
import uuid
import datetime
from collections import deque
import itertools

from collections import defaultdict
from time import sleep
from typing import Generator, Tuple, List, Dict

import boto3
import gradio as gr
import requests
from datasets import load_dataset

logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
logging.getLogger("httpx").setLevel(logging.WARNING)

# Create a DynamoDB client
dynamodb = boto3.resource('dynamodb', region_name='us-east-1')
# Get a reference to the table
table = dynamodb.Table('oaaic_chatbot_arena')


def prompt_human_instruct(system_msg, history):
    return system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["###Human: "+item[0], "###Assistant: "+item[1]])
        for item in history])


def prompt_instruct(system_msg, history):
    return system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]])
        for item in history])


def prompt_chat(system_msg, history):
    return system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
        for item in history])


def prompt_roleplay(system_msg, history):
    return "<|system|>" + system_msg.strip() + "\n" + \
        "\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
        for item in history])


class Pipeline:
    prefer_async = True

    def __init__(self, endpoint_id, name, prompt_fn, stop_tokens=None):
        self.endpoint_id = endpoint_id
        self.name = name
        self.prompt_fn = prompt_fn
        stop_tokens = stop_tokens or []
        self.generation_config = {
            "max_new_tokens": 1024,
            "top_k": 40,
            "top_p": 0.90,
            "temperature": 0.72,
            "repetition_penalty": 1.22,
            "last_n_tokens": 64,
            "seed": -1,
            "batch_size": 8,
            "threads": -1,
            "stop": ["</s>", "USER:", "### Instruction:"] + stop_tokens,
        }

    def get_generation_config(self):
        return self.generation_config.copy()

    def __call__(self, prompt, config=None) -> Generator[List[Dict[str, str]], None, None]:
        input = config if config else self.generation_config.copy()
        input["prompt"] = prompt

        if self.prefer_async:
            url = f"https://api.runpod.ai/v2/{self.endpoint_id}/run"
        else:
            url = f"https://api.runpod.ai/v2/{self.endpoint_id}/runsync"
        headers = {
            "Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
        }
        response = requests.post(url, headers=headers, json={"input": input})

        if response.status_code == 200:
            data = response.json()
            task_id = data.get('id')
            return self.stream_output(task_id)

    def stream_output(self,task_id) -> Generator[List[Dict[str, str]], None, None]:
        url = f"https://api.runpod.ai/v2/{self.endpoint_id}/stream/{task_id}"
        headers = {
            "Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
        }

        while True:
            try:
                response = requests.get(url, headers=headers)
                if response.status_code == 200:
                    data = response.json()
                    yield [{"generated_text": "".join([s["output"] for s in data["stream"]])}]
                    if data.get('status') == 'COMPLETED':
                        return
                elif response.status_code >= 400:
                    logging.error(response.json())
            except ConnectionError:
                pass

    def poll_for_status(self, task_id):
        url = f"https://api.runpod.ai/v2/{self.endpoint_id}/status/{task_id}"
        headers = {
            "Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
        }

        while True:
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                data = response.json()
                if data.get('status') == 'COMPLETED':
                    return [{"generated_text": data["output"]}]
            elif response.status_code >= 400:
                logging.error(response.json())
            # Sleep for 3 seconds between each request
            sleep(3)

    def transform_prompt(self, system_msg, history):
        return self.prompt_fn(system_msg, history)


AVAILABLE_MODELS = {
    "hermes-13b": ("p0zqb2gkcwp0ww", prompt_instruct),
    "manticore-13b-chat": ("u6tv84bpomhfei", prompt_chat),
    "airoboros-13b": ("rglzxnk80660ja", prompt_chat),
    "wizard-vicuna-13b": ("9vvpikt4ttyqos", prompt_chat),
    "lmsys-vicuna-13b": ("2nlb32ydkaz6yd", prompt_chat),
    "supercot-13b": ("0be7865dwxpwqk", prompt_instruct, ["Instruction:"]),
    "mpt-7b-instruct": ("jpqbvnyluj18b0", prompt_instruct),
    "guanaco-13b": ("yxl8w98z017mw2", prompt_instruct),
    # "minotaur-13b": ("6f1baphxjpjk7b", prompt_chat),
    "minotaur-13b-fixed": ("sjnkstd3e40ojj", prompt_roleplay),
    "wizardlm-13b": ("k0chcxsgukov8x", prompt_instruct),
    "selfee-13b": ("50rnvxln9bmf4c", prompt_instruct),
    "robin-v2-13b": ("4cw4vwzzhsl5pq", prompt_human_instruct, ["###Human"]),
    "minotaur-15b-8k": ("zdk804d2txtt68", prompt_chat),
}

OAAIC_MODELS = [
    "minotaur-15b-8k",
    "minotaur-13b-fixed",
    "manticore-13b-chat",
    # "minotaur-mpt-7b",
]
OAAIC_MODELS_ROLEPLAY = {
    "manticore-13b-chat-roleplay": ("u6tv84bpomhfei", prompt_roleplay),
    "minotaur-13b-roleplay": ("6f1baphxjpjk7b", prompt_roleplay),
    "minotaur-13b-fixed-roleplay": ("sjnkstd3e40ojj", prompt_roleplay),
    "minotaur-15b-8k-roleplay": ("zdk804d2txtt68", prompt_roleplay),
    # "minotaur-mpt-7b": ("vm1wcsje126x1x", prompt_chat),
}

_memoized_models = defaultdict()


def get_model_pipeline(model_name):
    if not _memoized_models.get(model_name):
        kwargs = {}
        if model_name in AVAILABLE_MODELS:
            if len(AVAILABLE_MODELS[model_name]) >= 3:
                kwargs["stop_tokens"] = AVAILABLE_MODELS[model_name][2]
            _memoized_models[model_name] = Pipeline(AVAILABLE_MODELS[model_name][0], model_name, AVAILABLE_MODELS[model_name][1], **kwargs)
        elif model_name in OAAIC_MODELS_ROLEPLAY:
            _memoized_models[model_name] = Pipeline(OAAIC_MODELS_ROLEPLAY[model_name][0], model_name, OAAIC_MODELS_ROLEPLAY[model_name][1], **kwargs)
    return _memoized_models.get(model_name)

start_message = """Below is a dialogue between a USER and an ASSISTANT. The USER may ask questions, request information, or provide instructions for a task, often supplementing with additional context. The ASSISTANT responds accurately and effectively, offering insights, answering questions, or executing tasks to the best of its ability based on the given information. 
"""


def user(message, nudge_msg, history1, history2):
    history1 = history1 or []
    history2 = history2 or []
    # Append the user's message to the conversation history
    history1.append([message, nudge_msg])
    history2.append([message, nudge_msg])

    return "", nudge_msg, history1, history2


def token_generator(generator1, generator2, mapping_fn=None, fillvalue=None):
    if not fillvalue:
        fillvalue = ''
    if not mapping_fn:
        mapping_fn = lambda x: x
    for output1, output2 in itertools.zip_longest(generator1, generator2, fillvalue=fillvalue):
        tokens1 = re.findall(r'(.*?)(\s|$)', mapping_fn(output1))
        tokens2 = re.findall(r'(.*?)(\s|$)', mapping_fn(output2))

        for token1, token2 in itertools.zip_longest(tokens1, tokens2, fillvalue=''):
            yield "".join(token1), "".join(token2)


def chat(history1, history2, system_msg, state):
    history1 = history1 or []
    history2 = history2 or []

    arena_bots = None
    if state and "models" in state and state['models']:
        arena_bots = state['models']
    if not arena_bots:
        arena_bots = list(AVAILABLE_MODELS.keys())
        random.shuffle(arena_bots)
        # bootstrap a new bot into the arena more often
        if "minotaur-15b-8k" not in arena_bots[0:2] and random.choice([True, False, False]):
            arena_bots.insert(random.choice([0,1]), "minotaur-15b-8k")

    battle = arena_bots[0:2]
    model1 = get_model_pipeline(battle[0])
    model2 = get_model_pipeline(battle[1])

    messages1 = model1.transform_prompt(system_msg, history1)
    messages2 = model2.transform_prompt(system_msg, history2)

    # remove last space from assistant, some models output a ZWSP if you leave a space
    messages1 = messages1.rstrip()
    messages2 = messages2.rstrip()

    model1_res = model1(messages1)  # type: Generator[str, None, None]
    model2_res = model2(messages2)  # type: Generator[str, None, None]
    res = token_generator(model1_res, model2_res, lambda x: x[0]['generated_text'], fillvalue=[{'generated_text': ''}])  # type: Generator[Tuple[str, str], None, None]
    logging.info({"models": [model1.name, model2.name]})
    for t1, t2 in res:
        if t1 is not None:
            history1[-1][1] += t1
        if t2 is not None:
            history2[-1][1] += t2
        # stream the response
        # [arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state]
        yield history1, history2, "", gr.update(value=battle[0]), gr.update(value=battle[1]), {"models": [model1.name, model2.name]}
        sleep(0.05)


def chosen_one(label, choice1_history, choice2_history, system_msg, nudge_msg, rlhf_persona, state):
    if not state:
        logging.error("missing state!!!")
    # Generate a uuid for each submission
    arena_battle_id = str(uuid.uuid4())

    # Get the current timestamp
    timestamp = datetime.datetime.now().isoformat()

    # Put the item in the table
    table.put_item(
        Item={
            'arena_battle_id': arena_battle_id,
            'timestamp': timestamp,
            'system_msg': system_msg,
            'nudge_prefix': nudge_msg,
            'choice1_name': state["models"][0],
            'choice1': choice1_history,
            'choice2_name': state["models"][1],
            'choice2': choice2_history,
            'label': label,
            'rlhf_persona': rlhf_persona,
        }
    )

chosen_one_first = functools.partial(chosen_one, 1)
chosen_one_second = functools.partial(chosen_one, 2)
chosen_one_tie = functools.partial(chosen_one, 0)
chosen_one_suck = functools.partial(chosen_one, 1)

leaderboard_intro = """### TBD
- This is very much a work-in-progress, if you'd like to help build this out, join us on [Discord](https://discord.gg/QYF8QrtEUm)

"""
elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores")
elo_scores = elo_scores["train"].sort("elo_score", reverse=True)


def refresh_md():
    return leaderboard_intro + "\n" + dataset_to_markdown()


def fetch_elo_scores():
    elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores")
    elo_scores = elo_scores["train"].sort("elo_score", reverse=True)
    return elo_scores


def dataset_to_markdown():
    dataset = fetch_elo_scores()
    # Get column names (dataset features)
    columns = list(dataset.features.keys())
    # Start markdown string with table headers
    markdown_string = "| " + " | ".join(columns) + " |\n"
    # Add markdown table row separator for headers
    markdown_string += "| " + " | ".join("---" for _ in columns) + " |\n"

    # Add each row from dataset to the markdown string
    for i in range(len(dataset)):
        row = dataset[i]
        markdown_string += "| " + " | ".join(str(row[column]) for column in columns) + " |\n"

    return markdown_string


"""
OpenAccess AI Chatbots chat
"""

def open_clear_chat(chat_history_state, chat_message, nudge_msg):
    chat_history_state = []
    chat_message = ''
    nudge_msg = ''
    return chat_history_state, chat_message, nudge_msg


def open_user(message, nudge_msg, history):
    history = history or []
    # Append the user's message to the conversation history
    history.append([message, nudge_msg])
    return "", nudge_msg, history


def open_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
    history = history or []

    model = get_model_pipeline(model_name)
    config = model.get_generation_config()
    config["max_new_tokens"] = max_new_tokens
    config["temperature"] = temperature
    config["temperature"] = temperature
    config["top_p"] = top_p
    config["top_k"] = top_k
    config["repetition_penalty"] = repetition_penalty

    messages = model.transform_prompt(system_msg, history)

    # remove last space from assistant, some models output a ZWSP if you leave a space
    messages = messages.rstrip()

    model_res = model(messages, config=config)  # type: Generator[List[Dict[str, str]], None, None]
    for res in model_res:
        # tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text'])
        tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text'])
        for subtoken in tokens:
            subtoken = "".join(subtoken)
            history[-1][1] += subtoken
            # stream the response
            yield history, history, ""
            sleep(0.01)


def open_rp_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
    history = history or []

    model = get_model_pipeline(f"{model_name}-roleplay")
    config = model.get_generation_config()
    config["max_new_tokens"] = max_new_tokens
    config["temperature"] = temperature
    config["temperature"] = temperature
    config["top_p"] = top_p
    config["top_k"] = top_k
    config["repetition_penalty"] = repetition_penalty

    messages = model.transform_prompt(system_msg, history)

    # remove last space from assistant, some models output a ZWSP if you leave a space
    messages = messages.rstrip()

    model_res = model(messages, config=config)  # type: Generator[List[Dict[str, str]], None, None]
    for res in model_res:
        tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text'])
        # tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text'])
        for subtoken in tokens:
            subtoken = "".join(subtoken)
            history[-1][1] += subtoken
            # stream the response
            yield history, history, ""
            sleep(0.01)


with gr.Blocks() as arena:
    with gr.Row():
        with gr.Column():
            gr.Markdown(f"""
                    ### brought to you by OpenAccess AI Collective
                    - Checkout out [our writeup on how this was built.](https://medium.com/@winglian/inference-any-llm-with-serverless-in-15-minutes-69eeb548a41d)
                    - This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless.
                    - Responses may not stream immediately due to cold starts on Serverless.
                    - Some responses WILL take AT LEAST 20 seconds to respond   
                    - The Chatbot Arena (for now), is single turn only. Responses will be cleared after submission. 
                    - Responses from the Arena will be used for building reward models. These reward models can be bucketed by Personas.
                    - [💵 Consider Donating on our Patreon](http://patreon.com/OpenAccessAICollective) or become a [GitHub Sponsor](https://github.com/sponsors/OpenAccess-AI-Collective)
                    - Join us on [Discord](https://discord.gg/PugNNHAF5r) 
                    """)
    with gr.Tab("Chatbot Arena"):
        with gr.Row():
            with gr.Column():
                arena_chatbot1 = gr.Chatbot(label="Chatbot A")
            with gr.Column():
                arena_chatbot2 = gr.Chatbot(label="Chatbot B")
        with gr.Row():
            choose1 = gr.Button(value="👈 Prefer left (A)", variant="secondary", visible=False).style(full_width=True)
            choose2 = gr.Button(value="👉 Prefer right (B)", variant="secondary", visible=False).style(full_width=True)
            choose3 = gr.Button(value="🤝 Tie", variant="secondary", visible=False).style(full_width=True)
            choose4 = gr.Button(value="🤮 Both are bad", variant="secondary", visible=False).style(full_width=True)
        with gr.Row():
            reveal1 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True)
            reveal2 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True)
        with gr.Row():
            dismiss_reveal = gr.Button(value="Dismiss & Continue", variant="secondary", visible=False).style(full_width=True)
        with gr.Row():
            with gr.Column():
                arena_message = gr.Textbox(
                    label="What do you want to ask?",
                    placeholder="Ask me anything.",
                    lines=3,
                )
            with gr.Column():
                arena_rlhf_persona = gr.Textbox(
                    "", label="Persona Tags", interactive=True, visible=True, placeholder="Tell us about how you are judging the quality. ex: #CoT #SFW #NSFW #helpful #ethical #creativity", lines=2)
                arena_system_msg = gr.Textbox(
                    start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt", lines=8)

                arena_nudge_msg = gr.Textbox(
                    "", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=2)
        with gr.Row():
            arena_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
            arena_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
            # arena_regenerate = gr.Button(value="Regenerate", variant="secondary").style(full_width=False)
        arena_state = gr.State({})

        arena_clear.click(lambda: None, None, arena_chatbot1, queue=False)
        arena_clear.click(lambda: None, None, arena_chatbot2, queue=False)
        arena_clear.click(lambda: None, None, arena_message, queue=False)
        arena_clear.click(lambda: None, None, arena_nudge_msg, queue=False)
        arena_clear.click(lambda: None, None, arena_state, queue=False)

        submit_click_event = arena_submit.click(
            lambda *args: (
                gr.update(visible=False, interactive=False),
                gr.update(visible=False),
                gr.update(visible=False),
            ),
            inputs=[], outputs=[arena_message, arena_clear, arena_submit], queue=True
        ).then(
            fn=user, inputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], outputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], queue=True
        ).then(
            fn=chat, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_state], outputs=[arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state], queue=True
        ).then(
            lambda *args: (
                gr.update(visible=False, interactive=False),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=False),
                gr.update(visible=False),
            ),
            inputs=[arena_message, arena_nudge_msg, arena_system_msg], outputs=[arena_message, choose1, choose2, choose3, choose4, arena_clear, arena_submit], queue=True
        )

        choose1_click_event = choose1.click(
            fn=chosen_one_first, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
        ).then(
            lambda *args: (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
            ),
            inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
        )

        choose2_click_event = choose2.click(
            fn=chosen_one_second, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
        ).then(
            lambda *args: (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
            ),
            inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
        )

        choose3_click_event = choose3.click(
            fn=chosen_one_tie, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
        ).then(
            lambda *args: (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
            ),
            inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
        )

        choose4_click_event = choose4.click(
            fn=chosen_one_suck, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
        ).then(
            lambda *args: (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
            ),
            inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
        )

        dismiss_click_event = dismiss_reveal.click(
            lambda *args: (
                gr.update(visible=True, interactive=True),
                gr.update(visible=False),
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=False),
                gr.update(visible=False),
                None,
                None,
                None,
            ),
            inputs=[], outputs=[
                arena_message,
                dismiss_reveal,
                arena_clear, arena_submit,
                reveal1, reveal2,
                arena_chatbot1, arena_chatbot2,
                arena_state,
            ], queue=True
        )
    with gr.Tab("Leaderboard"):
        with gr.Column():
            leaderboard_markdown = gr.Markdown(f"""{leaderboard_intro}
{dataset_to_markdown()}
""")
            leaderboad_refresh = gr.Button(value="Refresh Leaderboard", variant="secondary").style(full_width=True)
        leaderboad_refresh.click(fn=refresh_md, inputs=[], outputs=[leaderboard_markdown])
    with gr.Tab("OAAIC Chatbots"):
        gr.Markdown("# GGML Spaces Chatbot Demo")
        open_model_choice = gr.Dropdown(label="Model", choices=OAAIC_MODELS, value=OAAIC_MODELS[0])
        open_chatbot = gr.Chatbot().style(height=400)
        with gr.Row():
            open_message = gr.Textbox(
                label="What do you want to chat about?",
                placeholder="Ask me anything.",
                lines=3,
            )
        with gr.Row():
            open_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
            open_roleplay = gr.Button(value="Roleplay", variant="secondary").style(full_width=True)
            open_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
            open_stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
        with gr.Row():
            with gr.Column():
                open_max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
                open_temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8)
                open_top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
                open_top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
                open_repetition_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)

        open_system_msg = gr.Textbox(
            start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt, useful for RP", lines=5)

        open_nudge_msg = gr.Textbox(
            "", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1)

        open_chat_history_state = gr.State()
        open_clear.click(open_clear_chat, inputs=[open_chat_history_state, open_message, open_nudge_msg], outputs=[open_chat_history_state, open_message, open_nudge_msg], queue=False)
        open_clear.click(lambda: None, None, open_chatbot, queue=False)

        open_submit_click_event = open_submit.click(
            fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True
        ).then(
            fn=open_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True
        )
        open_roleplay_click_event = open_roleplay.click(
            fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True
        ).then(
            fn=open_rp_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True
        )
        open_stop.click(fn=None, inputs=None, outputs=None, cancels=[open_submit_click_event, open_roleplay_click_event], queue=False)

arena.queue(concurrency_count=5, max_size=16).launch(debug=True, server_name="0.0.0.0", server_port=7860)