jordonpeter01 commited on
Commit
d9076ee
·
0 Parent(s):

Duplicate from jordonpeter01/rlhf-arena-aws

Browse files
Files changed (5) hide show
  1. .gitattributes +34 -0
  2. README.md +20 -0
  3. app.py +604 -0
  4. calculate_elo.py +309 -0
  5. requirements.txt +3 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Community ChatBot Arena
3
+ emoji: 🤖⚔️🤖
4
+ colorFrom: blue
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.33.1
8
+ app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ duplicated_from: jordonpeter01/rlhf-arena-aws
12
+ ---
13
+
14
+ # OpenAccess AI Collective Community ChatBot Arena
15
+
16
+ - Arena: https://huggingface.co/spaces/openaccess-ai-collective/rlhf-arena
17
+ - GitHub: https://github.com/OpenAccess-AI-Collective/rlhf-arena
18
+ - Built using Runpod Serverless. See our writeup here: https://medium.com/@winglian/inference-any-llm-with-serverless-in-15-minutes-69eeb548a41d
19
+ - Want to have your language model added to the Arena? [Create an Issue](https://github.com/OpenAccess-AI-Collective/rlhf-arena/issues) or reach out on [Discord](https://discord.gg/PugNNHAF5r)
20
+ - [💵 Consider Donating on our Patreon](http://patreon.com/OpenAccessAICollective)
app.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import concurrent
2
+ import functools
3
+ import logging
4
+ import os
5
+ import random
6
+ import re
7
+ import traceback
8
+ import uuid
9
+ import datetime
10
+ from collections import deque
11
+ import itertools
12
+
13
+ from collections import defaultdict
14
+ from time import sleep
15
+ from typing import Generator, Tuple, List, Dict
16
+
17
+ import boto3
18
+ import gradio as gr
19
+ import requests
20
+ from datasets import load_dataset
21
+
22
+ logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
23
+ logging.getLogger("httpx").setLevel(logging.WARNING)
24
+
25
+ # Create a DynamoDB client
26
+ dynamodb = boto3.resource('dynamodb', region_name='us-east-1')
27
+ # Get a reference to the table
28
+ table = dynamodb.Table('oaaic_chatbot_arena')
29
+
30
+
31
+ def prompt_human_instruct(system_msg, history):
32
+ return system_msg.strip() + "\n" + \
33
+ "\n".join(["\n".join(["###Human: "+item[0], "###Assistant: "+item[1]])
34
+ for item in history])
35
+
36
+
37
+ def prompt_instruct(system_msg, history):
38
+ return system_msg.strip() + "\n" + \
39
+ "\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]])
40
+ for item in history])
41
+
42
+
43
+ def prompt_chat(system_msg, history):
44
+ return system_msg.strip() + "\n" + \
45
+ "\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
46
+ for item in history])
47
+
48
+
49
+ def prompt_roleplay(system_msg, history):
50
+ return "<|system|>" + system_msg.strip() + "\n" + \
51
+ "\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
52
+ for item in history])
53
+
54
+
55
+ class Pipeline:
56
+ prefer_async = True
57
+
58
+ def __init__(self, endpoint_id, name, prompt_fn, stop_tokens=None):
59
+ self.endpoint_id = endpoint_id
60
+ self.name = name
61
+ self.prompt_fn = prompt_fn
62
+ stop_tokens = stop_tokens or []
63
+ self.generation_config = {
64
+ "max_new_tokens": 1024,
65
+ "top_k": 40,
66
+ "top_p": 0.90,
67
+ "temperature": 0.72,
68
+ "repetition_penalty": 1.22,
69
+ "last_n_tokens": 64,
70
+ "seed": -1,
71
+ "batch_size": 8,
72
+ "threads": -1,
73
+ "stop": ["</s>", "USER:", "### Instruction:"] + stop_tokens,
74
+ }
75
+
76
+ def get_generation_config(self):
77
+ return self.generation_config.copy()
78
+
79
+ def __call__(self, prompt, config=None) -> Generator[List[Dict[str, str]], None, None]:
80
+ input = config if config else self.generation_config.copy()
81
+ input["prompt"] = prompt
82
+
83
+ if self.prefer_async:
84
+ url = f"https://api.runpod.ai/v2/{self.endpoint_id}/run"
85
+ else:
86
+ url = f"https://api.runpod.ai/v2/{self.endpoint_id}/runsync"
87
+ headers = {
88
+ "Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
89
+ }
90
+ response = requests.post(url, headers=headers, json={"input": input})
91
+
92
+ if response.status_code == 200:
93
+ data = response.json()
94
+ task_id = data.get('id')
95
+ return self.stream_output(task_id)
96
+
97
+ def stream_output(self,task_id) -> Generator[List[Dict[str, str]], None, None]:
98
+ url = f"https://api.runpod.ai/v2/{self.endpoint_id}/stream/{task_id}"
99
+ headers = {
100
+ "Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
101
+ }
102
+
103
+ while True:
104
+ try:
105
+ response = requests.get(url, headers=headers)
106
+ if response.status_code == 200:
107
+ data = response.json()
108
+ yield [{"generated_text": "".join([s["output"] for s in data["stream"]])}]
109
+ if data.get('status') == 'COMPLETED':
110
+ return
111
+ elif response.status_code >= 400:
112
+ logging.error(response.json())
113
+ except ConnectionError:
114
+ pass
115
+
116
+ def poll_for_status(self, task_id):
117
+ url = f"https://api.runpod.ai/v2/{self.endpoint_id}/status/{task_id}"
118
+ headers = {
119
+ "Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
120
+ }
121
+
122
+ while True:
123
+ response = requests.get(url, headers=headers)
124
+ if response.status_code == 200:
125
+ data = response.json()
126
+ if data.get('status') == 'COMPLETED':
127
+ return [{"generated_text": data["output"]}]
128
+ elif response.status_code >= 400:
129
+ logging.error(response.json())
130
+ # Sleep for 3 seconds between each request
131
+ sleep(3)
132
+
133
+ def transform_prompt(self, system_msg, history):
134
+ return self.prompt_fn(system_msg, history)
135
+
136
+
137
+ AVAILABLE_MODELS = {
138
+ "hermes-13b": ("p0zqb2gkcwp0ww", prompt_instruct),
139
+ "manticore-13b-chat": ("u6tv84bpomhfei", prompt_chat),
140
+ "airoboros-13b": ("rglzxnk80660ja", prompt_chat),
141
+ "wizard-vicuna-13b": ("9vvpikt4ttyqos", prompt_chat),
142
+ "lmsys-vicuna-13b": ("2nlb32ydkaz6yd", prompt_chat),
143
+ "supercot-13b": ("0be7865dwxpwqk", prompt_instruct, ["Instruction:"]),
144
+ "mpt-7b-instruct": ("jpqbvnyluj18b0", prompt_instruct),
145
+ "guanaco-13b": ("yxl8w98z017mw2", prompt_instruct),
146
+ # "minotaur-13b": ("6f1baphxjpjk7b", prompt_chat),
147
+ "minotaur-13b-fixed": ("sjnkstd3e40ojj", prompt_roleplay),
148
+ "wizardlm-13b": ("k0chcxsgukov8x", prompt_instruct),
149
+ "selfee-13b": ("50rnvxln9bmf4c", prompt_instruct),
150
+ "robin-v2-13b": ("4cw4vwzzhsl5pq", prompt_human_instruct, ["###Human"]),
151
+ "minotaur-15b-8k": ("zdk804d2txtt68", prompt_chat),
152
+ }
153
+
154
+ OAAIC_MODELS = [
155
+ "minotaur-15b-8k",
156
+ "minotaur-13b-fixed",
157
+ "manticore-13b-chat",
158
+ # "minotaur-mpt-7b",
159
+ ]
160
+ OAAIC_MODELS_ROLEPLAY = {
161
+ "manticore-13b-chat-roleplay": ("u6tv84bpomhfei", prompt_roleplay),
162
+ "minotaur-13b-roleplay": ("6f1baphxjpjk7b", prompt_roleplay),
163
+ "minotaur-13b-fixed-roleplay": ("sjnkstd3e40ojj", prompt_roleplay),
164
+ "minotaur-15b-8k-roleplay": ("zdk804d2txtt68", prompt_roleplay),
165
+ # "minotaur-mpt-7b": ("vm1wcsje126x1x", prompt_chat),
166
+ }
167
+
168
+ _memoized_models = defaultdict()
169
+
170
+
171
+ def get_model_pipeline(model_name):
172
+ if not _memoized_models.get(model_name):
173
+ kwargs = {}
174
+ if model_name in AVAILABLE_MODELS:
175
+ if len(AVAILABLE_MODELS[model_name]) >= 3:
176
+ kwargs["stop_tokens"] = AVAILABLE_MODELS[model_name][2]
177
+ _memoized_models[model_name] = Pipeline(AVAILABLE_MODELS[model_name][0], model_name, AVAILABLE_MODELS[model_name][1], **kwargs)
178
+ elif model_name in OAAIC_MODELS_ROLEPLAY:
179
+ _memoized_models[model_name] = Pipeline(OAAIC_MODELS_ROLEPLAY[model_name][0], model_name, OAAIC_MODELS_ROLEPLAY[model_name][1], **kwargs)
180
+ return _memoized_models.get(model_name)
181
+
182
+ start_message = """Below is a dialogue between a USER and an ASSISTANT. The USER may ask questions, request information, or provide instructions for a task, often supplementing with additional context. The ASSISTANT responds accurately and effectively, offering insights, answering questions, or executing tasks to the best of its ability based on the given information.
183
+ """
184
+
185
+
186
+ def user(message, nudge_msg, history1, history2):
187
+ history1 = history1 or []
188
+ history2 = history2 or []
189
+ # Append the user's message to the conversation history
190
+ history1.append([message, nudge_msg])
191
+ history2.append([message, nudge_msg])
192
+
193
+ return "", nudge_msg, history1, history2
194
+
195
+
196
+ def token_generator(generator1, generator2, mapping_fn=None, fillvalue=None):
197
+ if not fillvalue:
198
+ fillvalue = ''
199
+ if not mapping_fn:
200
+ mapping_fn = lambda x: x
201
+ for output1, output2 in itertools.zip_longest(generator1, generator2, fillvalue=fillvalue):
202
+ tokens1 = re.findall(r'(.*?)(\s|$)', mapping_fn(output1))
203
+ tokens2 = re.findall(r'(.*?)(\s|$)', mapping_fn(output2))
204
+
205
+ for token1, token2 in itertools.zip_longest(tokens1, tokens2, fillvalue=''):
206
+ yield "".join(token1), "".join(token2)
207
+
208
+
209
+ def chat(history1, history2, system_msg, state):
210
+ history1 = history1 or []
211
+ history2 = history2 or []
212
+
213
+ arena_bots = None
214
+ if state and "models" in state and state['models']:
215
+ arena_bots = state['models']
216
+ if not arena_bots:
217
+ arena_bots = list(AVAILABLE_MODELS.keys())
218
+ random.shuffle(arena_bots)
219
+ # bootstrap a new bot into the arena more often
220
+ if "minotaur-15b-8k" not in arena_bots[0:2] and random.choice([True, False, False]):
221
+ arena_bots.insert(random.choice([0,1]), "minotaur-15b-8k")
222
+
223
+ battle = arena_bots[0:2]
224
+ model1 = get_model_pipeline(battle[0])
225
+ model2 = get_model_pipeline(battle[1])
226
+
227
+ messages1 = model1.transform_prompt(system_msg, history1)
228
+ messages2 = model2.transform_prompt(system_msg, history2)
229
+
230
+ # remove last space from assistant, some models output a ZWSP if you leave a space
231
+ messages1 = messages1.rstrip()
232
+ messages2 = messages2.rstrip()
233
+
234
+ model1_res = model1(messages1) # type: Generator[str, None, None]
235
+ model2_res = model2(messages2) # type: Generator[str, None, None]
236
+ res = token_generator(model1_res, model2_res, lambda x: x[0]['generated_text'], fillvalue=[{'generated_text': ''}]) # type: Generator[Tuple[str, str], None, None]
237
+ logging.info({"models": [model1.name, model2.name]})
238
+ for t1, t2 in res:
239
+ if t1 is not None:
240
+ history1[-1][1] += t1
241
+ if t2 is not None:
242
+ history2[-1][1] += t2
243
+ # stream the response
244
+ # [arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state]
245
+ yield history1, history2, "", gr.update(value=battle[0]), gr.update(value=battle[1]), {"models": [model1.name, model2.name]}
246
+ sleep(0.05)
247
+
248
+
249
+ def chosen_one(label, choice1_history, choice2_history, system_msg, nudge_msg, rlhf_persona, state):
250
+ if not state:
251
+ logging.error("missing state!!!")
252
+ # Generate a uuid for each submission
253
+ arena_battle_id = str(uuid.uuid4())
254
+
255
+ # Get the current timestamp
256
+ timestamp = datetime.datetime.now().isoformat()
257
+
258
+ # Put the item in the table
259
+ table.put_item(
260
+ Item={
261
+ 'arena_battle_id': arena_battle_id,
262
+ 'timestamp': timestamp,
263
+ 'system_msg': system_msg,
264
+ 'nudge_prefix': nudge_msg,
265
+ 'choice1_name': state["models"][0],
266
+ 'choice1': choice1_history,
267
+ 'choice2_name': state["models"][1],
268
+ 'choice2': choice2_history,
269
+ 'label': label,
270
+ 'rlhf_persona': rlhf_persona,
271
+ }
272
+ )
273
+
274
+ chosen_one_first = functools.partial(chosen_one, 1)
275
+ chosen_one_second = functools.partial(chosen_one, 2)
276
+ chosen_one_tie = functools.partial(chosen_one, 0)
277
+ chosen_one_suck = functools.partial(chosen_one, 1)
278
+
279
+ leaderboard_intro = """### TBD
280
+ - This is very much a work-in-progress, if you'd like to help build this out, join us on [Discord](https://discord.gg/QYF8QrtEUm)
281
+
282
+ """
283
+ elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores")
284
+ elo_scores = elo_scores["train"].sort("elo_score", reverse=True)
285
+
286
+
287
+ def refresh_md():
288
+ return leaderboard_intro + "\n" + dataset_to_markdown()
289
+
290
+
291
+ def fetch_elo_scores():
292
+ elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores")
293
+ elo_scores = elo_scores["train"].sort("elo_score", reverse=True)
294
+ return elo_scores
295
+
296
+
297
+ def dataset_to_markdown():
298
+ dataset = fetch_elo_scores()
299
+ # Get column names (dataset features)
300
+ columns = list(dataset.features.keys())
301
+ # Start markdown string with table headers
302
+ markdown_string = "| " + " | ".join(columns) + " |\n"
303
+ # Add markdown table row separator for headers
304
+ markdown_string += "| " + " | ".join("---" for _ in columns) + " |\n"
305
+
306
+ # Add each row from dataset to the markdown string
307
+ for i in range(len(dataset)):
308
+ row = dataset[i]
309
+ markdown_string += "| " + " | ".join(str(row[column]) for column in columns) + " |\n"
310
+
311
+ return markdown_string
312
+
313
+
314
+ """
315
+ OpenAccess AI Chatbots chat
316
+ """
317
+
318
+ def open_clear_chat(chat_history_state, chat_message, nudge_msg):
319
+ chat_history_state = []
320
+ chat_message = ''
321
+ nudge_msg = ''
322
+ return chat_history_state, chat_message, nudge_msg
323
+
324
+
325
+ def open_user(message, nudge_msg, history):
326
+ history = history or []
327
+ # Append the user's message to the conversation history
328
+ history.append([message, nudge_msg])
329
+ return "", nudge_msg, history
330
+
331
+
332
+ def open_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
333
+ history = history or []
334
+
335
+ model = get_model_pipeline(model_name)
336
+ config = model.get_generation_config()
337
+ config["max_new_tokens"] = max_new_tokens
338
+ config["temperature"] = temperature
339
+ config["temperature"] = temperature
340
+ config["top_p"] = top_p
341
+ config["top_k"] = top_k
342
+ config["repetition_penalty"] = repetition_penalty
343
+
344
+ messages = model.transform_prompt(system_msg, history)
345
+
346
+ # remove last space from assistant, some models output a ZWSP if you leave a space
347
+ messages = messages.rstrip()
348
+
349
+ model_res = model(messages, config=config) # type: Generator[List[Dict[str, str]], None, None]
350
+ for res in model_res:
351
+ # tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text'])
352
+ tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text'])
353
+ for subtoken in tokens:
354
+ subtoken = "".join(subtoken)
355
+ history[-1][1] += subtoken
356
+ # stream the response
357
+ yield history, history, ""
358
+ sleep(0.01)
359
+
360
+
361
+ def open_rp_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
362
+ history = history or []
363
+
364
+ model = get_model_pipeline(f"{model_name}-roleplay")
365
+ config = model.get_generation_config()
366
+ config["max_new_tokens"] = max_new_tokens
367
+ config["temperature"] = temperature
368
+ config["temperature"] = temperature
369
+ config["top_p"] = top_p
370
+ config["top_k"] = top_k
371
+ config["repetition_penalty"] = repetition_penalty
372
+
373
+ messages = model.transform_prompt(system_msg, history)
374
+
375
+ # remove last space from assistant, some models output a ZWSP if you leave a space
376
+ messages = messages.rstrip()
377
+
378
+ model_res = model(messages, config=config) # type: Generator[List[Dict[str, str]], None, None]
379
+ for res in model_res:
380
+ tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text'])
381
+ # tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text'])
382
+ for subtoken in tokens:
383
+ subtoken = "".join(subtoken)
384
+ history[-1][1] += subtoken
385
+ # stream the response
386
+ yield history, history, ""
387
+ sleep(0.01)
388
+
389
+
390
+ with gr.Blocks() as arena:
391
+ with gr.Row():
392
+ with gr.Column():
393
+ gr.Markdown(f"""
394
+ ### brought to you by OpenAccess AI Collective
395
+ - Checkout out [our writeup on how this was built.](https://medium.com/@winglian/inference-any-llm-with-serverless-in-15-minutes-69eeb548a41d)
396
+ - This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless.
397
+ - Responses may not stream immediately due to cold starts on Serverless.
398
+ - Some responses WILL take AT LEAST 20 seconds to respond
399
+ - The Chatbot Arena (for now), is single turn only. Responses will be cleared after submission.
400
+ - Responses from the Arena will be used for building reward models. These reward models can be bucketed by Personas.
401
+ - [💵 Consider Donating on our Patreon](http://patreon.com/OpenAccessAICollective) or become a [GitHub Sponsor](https://github.com/sponsors/OpenAccess-AI-Collective)
402
+ - Join us on [Discord](https://discord.gg/PugNNHAF5r)
403
+ """)
404
+ with gr.Tab("Chatbot Arena"):
405
+ with gr.Row():
406
+ with gr.Column():
407
+ arena_chatbot1 = gr.Chatbot(label="Chatbot A")
408
+ with gr.Column():
409
+ arena_chatbot2 = gr.Chatbot(label="Chatbot B")
410
+ with gr.Row():
411
+ choose1 = gr.Button(value="👈 Prefer left (A)", variant="secondary", visible=False).style(full_width=True)
412
+ choose2 = gr.Button(value="👉 Prefer right (B)", variant="secondary", visible=False).style(full_width=True)
413
+ choose3 = gr.Button(value="🤝 Tie", variant="secondary", visible=False).style(full_width=True)
414
+ choose4 = gr.Button(value="🤮 Both are bad", variant="secondary", visible=False).style(full_width=True)
415
+ with gr.Row():
416
+ reveal1 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True)
417
+ reveal2 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True)
418
+ with gr.Row():
419
+ dismiss_reveal = gr.Button(value="Dismiss & Continue", variant="secondary", visible=False).style(full_width=True)
420
+ with gr.Row():
421
+ with gr.Column():
422
+ arena_message = gr.Textbox(
423
+ label="What do you want to ask?",
424
+ placeholder="Ask me anything.",
425
+ lines=3,
426
+ )
427
+ with gr.Column():
428
+ arena_rlhf_persona = gr.Textbox(
429
+ "", label="Persona Tags", interactive=True, visible=True, placeholder="Tell us about how you are judging the quality. ex: #CoT #SFW #NSFW #helpful #ethical #creativity", lines=2)
430
+ arena_system_msg = gr.Textbox(
431
+ start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt", lines=8)
432
+
433
+ arena_nudge_msg = gr.Textbox(
434
+ "", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=2)
435
+ with gr.Row():
436
+ arena_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
437
+ arena_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
438
+ # arena_regenerate = gr.Button(value="Regenerate", variant="secondary").style(full_width=False)
439
+ arena_state = gr.State({})
440
+
441
+ arena_clear.click(lambda: None, None, arena_chatbot1, queue=False)
442
+ arena_clear.click(lambda: None, None, arena_chatbot2, queue=False)
443
+ arena_clear.click(lambda: None, None, arena_message, queue=False)
444
+ arena_clear.click(lambda: None, None, arena_nudge_msg, queue=False)
445
+ arena_clear.click(lambda: None, None, arena_state, queue=False)
446
+
447
+ submit_click_event = arena_submit.click(
448
+ lambda *args: (
449
+ gr.update(visible=False, interactive=False),
450
+ gr.update(visible=False),
451
+ gr.update(visible=False),
452
+ ),
453
+ inputs=[], outputs=[arena_message, arena_clear, arena_submit], queue=True
454
+ ).then(
455
+ fn=user, inputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], outputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], queue=True
456
+ ).then(
457
+ fn=chat, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_state], outputs=[arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state], queue=True
458
+ ).then(
459
+ lambda *args: (
460
+ gr.update(visible=False, interactive=False),
461
+ gr.update(visible=True),
462
+ gr.update(visible=True),
463
+ gr.update(visible=True),
464
+ gr.update(visible=True),
465
+ gr.update(visible=False),
466
+ gr.update(visible=False),
467
+ ),
468
+ inputs=[arena_message, arena_nudge_msg, arena_system_msg], outputs=[arena_message, choose1, choose2, choose3, choose4, arena_clear, arena_submit], queue=True
469
+ )
470
+
471
+ choose1_click_event = choose1.click(
472
+ fn=chosen_one_first, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
473
+ ).then(
474
+ lambda *args: (
475
+ gr.update(visible=False),
476
+ gr.update(visible=False),
477
+ gr.update(visible=False),
478
+ gr.update(visible=False),
479
+ gr.update(visible=True),
480
+ gr.update(visible=True),
481
+ gr.update(visible=True),
482
+ ),
483
+ inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
484
+ )
485
+
486
+ choose2_click_event = choose2.click(
487
+ fn=chosen_one_second, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
488
+ ).then(
489
+ lambda *args: (
490
+ gr.update(visible=False),
491
+ gr.update(visible=False),
492
+ gr.update(visible=False),
493
+ gr.update(visible=False),
494
+ gr.update(visible=True),
495
+ gr.update(visible=True),
496
+ gr.update(visible=True),
497
+ ),
498
+ inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
499
+ )
500
+
501
+ choose3_click_event = choose3.click(
502
+ fn=chosen_one_tie, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
503
+ ).then(
504
+ lambda *args: (
505
+ gr.update(visible=False),
506
+ gr.update(visible=False),
507
+ gr.update(visible=False),
508
+ gr.update(visible=False),
509
+ gr.update(visible=True),
510
+ gr.update(visible=True),
511
+ gr.update(visible=True),
512
+ ),
513
+ inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
514
+ )
515
+
516
+ choose4_click_event = choose4.click(
517
+ fn=chosen_one_suck, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
518
+ ).then(
519
+ lambda *args: (
520
+ gr.update(visible=False),
521
+ gr.update(visible=False),
522
+ gr.update(visible=False),
523
+ gr.update(visible=False),
524
+ gr.update(visible=True),
525
+ gr.update(visible=True),
526
+ gr.update(visible=True),
527
+ ),
528
+ inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
529
+ )
530
+
531
+ dismiss_click_event = dismiss_reveal.click(
532
+ lambda *args: (
533
+ gr.update(visible=True, interactive=True),
534
+ gr.update(visible=False),
535
+ gr.update(visible=True),
536
+ gr.update(visible=True),
537
+ gr.update(visible=False),
538
+ gr.update(visible=False),
539
+ None,
540
+ None,
541
+ None,
542
+ ),
543
+ inputs=[], outputs=[
544
+ arena_message,
545
+ dismiss_reveal,
546
+ arena_clear, arena_submit,
547
+ reveal1, reveal2,
548
+ arena_chatbot1, arena_chatbot2,
549
+ arena_state,
550
+ ], queue=True
551
+ )
552
+ with gr.Tab("Leaderboard"):
553
+ with gr.Column():
554
+ leaderboard_markdown = gr.Markdown(f"""{leaderboard_intro}
555
+ {dataset_to_markdown()}
556
+ """)
557
+ leaderboad_refresh = gr.Button(value="Refresh Leaderboard", variant="secondary").style(full_width=True)
558
+ leaderboad_refresh.click(fn=refresh_md, inputs=[], outputs=[leaderboard_markdown])
559
+ with gr.Tab("OAAIC Chatbots"):
560
+ gr.Markdown("# GGML Spaces Chatbot Demo")
561
+ open_model_choice = gr.Dropdown(label="Model", choices=OAAIC_MODELS, value=OAAIC_MODELS[0])
562
+ open_chatbot = gr.Chatbot().style(height=400)
563
+ with gr.Row():
564
+ open_message = gr.Textbox(
565
+ label="What do you want to chat about?",
566
+ placeholder="Ask me anything.",
567
+ lines=3,
568
+ )
569
+ with gr.Row():
570
+ open_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
571
+ open_roleplay = gr.Button(value="Roleplay", variant="secondary").style(full_width=True)
572
+ open_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
573
+ open_stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
574
+ with gr.Row():
575
+ with gr.Column():
576
+ open_max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
577
+ open_temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8)
578
+ open_top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
579
+ open_top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
580
+ open_repetition_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
581
+
582
+ open_system_msg = gr.Textbox(
583
+ start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt, useful for RP", lines=5)
584
+
585
+ open_nudge_msg = gr.Textbox(
586
+ "", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1)
587
+
588
+ open_chat_history_state = gr.State()
589
+ open_clear.click(open_clear_chat, inputs=[open_chat_history_state, open_message, open_nudge_msg], outputs=[open_chat_history_state, open_message, open_nudge_msg], queue=False)
590
+ open_clear.click(lambda: None, None, open_chatbot, queue=False)
591
+
592
+ open_submit_click_event = open_submit.click(
593
+ fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True
594
+ ).then(
595
+ fn=open_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True
596
+ )
597
+ open_roleplay_click_event = open_roleplay.click(
598
+ fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True
599
+ ).then(
600
+ fn=open_rp_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True
601
+ )
602
+ open_stop.click(fn=None, inputs=None, outputs=None, cancels=[open_submit_click_event, open_roleplay_click_event], queue=False)
603
+
604
+ arena.queue(concurrency_count=5, max_size=16).launch(debug=True, server_name="0.0.0.0", server_port=7860)
calculate_elo.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ from datetime import datetime
4
+ from decimal import Decimal
5
+ from typing import List
6
+
7
+ import boto3
8
+ from boto3.dynamodb.conditions import Attr, Key
9
+ from datasets import Dataset
10
+
11
+ logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
12
+
13
+ # Create a DynamoDB client
14
+ dynamodb = boto3.resource('dynamodb', region_name='us-east-1')
15
+
16
+
17
+ def _create_arena_table():
18
+ dynamodb.create_table(
19
+ TableName='oaaic_chatbot_arena',
20
+ KeySchema=[
21
+ {
22
+ 'AttributeName': 'arena_battle_id',
23
+ 'KeyType': 'HASH'
24
+ },
25
+ ],
26
+ AttributeDefinitions=[
27
+ {
28
+ 'AttributeName': 'arena_battle_id',
29
+ 'AttributeType': 'S'
30
+ },
31
+ {
32
+ 'AttributeName': 'timestamp',
33
+ 'AttributeType': 'S'
34
+ },
35
+ ],
36
+ ProvisionedThroughput={
37
+ 'ReadCapacityUnits': 5,
38
+ 'WriteCapacityUnits': 5
39
+ },
40
+ GlobalSecondaryIndexes=[
41
+ {
42
+ 'IndexName': 'TimestampIndex',
43
+ 'KeySchema': [
44
+ {
45
+ 'AttributeName': 'arena_battle_id',
46
+ 'KeyType': 'HASH'
47
+ },
48
+ {
49
+ 'AttributeName': 'timestamp',
50
+ 'KeyType': 'RANGE'
51
+ },
52
+ ],
53
+ 'Projection': {
54
+ 'ProjectionType': 'ALL',
55
+ },
56
+ 'ProvisionedThroughput': {
57
+ 'ReadCapacityUnits': 5,
58
+ 'WriteCapacityUnits': 5,
59
+ }
60
+ },
61
+ ]
62
+ )
63
+
64
+ def _create_elo_scores_table():
65
+ dynamodb.create_table(
66
+ TableName='elo_scores',
67
+ KeySchema=[
68
+ {
69
+ 'AttributeName': 'chatbot_name',
70
+ 'KeyType': 'HASH' # Partition key
71
+ },
72
+ ],
73
+ AttributeDefinitions=[
74
+ {
75
+ 'AttributeName': 'chatbot_name',
76
+ 'AttributeType': 'S'
77
+ },
78
+ ],
79
+ ProvisionedThroughput={
80
+ 'ReadCapacityUnits': 5,
81
+ 'WriteCapacityUnits': 5
82
+ }
83
+ )
84
+
85
+
86
+ def _create_elo_logs_table():
87
+ dynamodb.create_table(
88
+ TableName='elo_logs',
89
+ KeySchema=[
90
+ {
91
+ 'AttributeName': 'arena_battle_id',
92
+ 'KeyType': 'HASH' # Partition key
93
+ },
94
+ {
95
+ 'AttributeName': 'battle_timestamp',
96
+ 'KeyType': 'RANGE' # Sort key
97
+ },
98
+ ],
99
+ AttributeDefinitions=[
100
+ {
101
+ 'AttributeName': 'arena_battle_id',
102
+ 'AttributeType': 'S'
103
+ },
104
+ {
105
+ 'AttributeName': 'battle_timestamp',
106
+ 'AttributeType': 'S'
107
+ },
108
+ {
109
+ 'AttributeName': 'all',
110
+ 'AttributeType': 'S'
111
+ }
112
+ ],
113
+ ProvisionedThroughput={
114
+ 'ReadCapacityUnits': 10,
115
+ 'WriteCapacityUnits': 10
116
+ },
117
+ GlobalSecondaryIndexes=[
118
+ {
119
+ 'IndexName': 'AllTimestampIndex',
120
+ 'KeySchema': [
121
+ {
122
+ 'AttributeName': 'all',
123
+ 'KeyType': 'HASH' # Partition key for the GSI
124
+ },
125
+ {
126
+ 'AttributeName': 'battle_timestamp',
127
+ 'KeyType': 'RANGE' # Sort key for the GSI
128
+ }
129
+ ],
130
+ 'Projection': {
131
+ 'ProjectionType': 'ALL'
132
+ },
133
+ 'ProvisionedThroughput': {
134
+ 'ReadCapacityUnits': 10,
135
+ 'WriteCapacityUnits': 10
136
+ }
137
+ },
138
+ ]
139
+ )
140
+
141
+
142
+ def get_unprocessed_battles(last_processed_timestamp):
143
+ # Use boto3 to create a DynamoDB resource and reference the table
144
+ table = dynamodb.Table('oaaic_chatbot_arena')
145
+
146
+ # Use a query to retrieve unprocessed battles in temporal order
147
+ response = table.scan(
148
+ FilterExpression=Attr('timestamp').gt(last_processed_timestamp),
149
+ # ScanIndexForward=True
150
+ )
151
+
152
+ return response['Items']
153
+
154
+
155
+ def calculate_elo(rating1, rating2, result, K=32):
156
+ # Convert ratings to float
157
+ rating1 = float(rating1)
158
+ rating2 = float(rating2)
159
+
160
+ # Calculate the expected outcomes
161
+ expected_outcome1 = 1.0 / (1.0 + 10.0 ** ((rating2 - rating1) / 400.0))
162
+ expected_outcome2 = 1.0 - expected_outcome1
163
+
164
+ # Calculate the new Elo ratings
165
+ new_rating1 = rating1 + K * (result - expected_outcome1)
166
+ new_rating2 = rating2 + K * ((1.0 - result) - expected_outcome2)
167
+
168
+ return Decimal(new_rating1).quantize(Decimal('0.00')), Decimal(new_rating2).quantize(Decimal('0.00'))
169
+
170
+
171
+ def get_last_processed_timestamp():
172
+ table = dynamodb.Table('elo_logs')
173
+
174
+ # Scan the table sorted by timestamp in descending order
175
+ response = table.query(
176
+ IndexName='AllTimestampIndex',
177
+ KeyConditionExpression=Key('all').eq('ALL'),
178
+ ScanIndexForward=False,
179
+ Limit=1
180
+ )
181
+
182
+ # If there are no items in the table, return a default timestamp
183
+ if not response['Items']:
184
+ return '1970-01-01T00:00:00'
185
+
186
+ # Otherwise, return the timestamp of the latest item
187
+ return response['Items'][0]['battle_timestamp']
188
+
189
+
190
+ def log_elo_update(arena_battle_id, battle_timestamp, new_rating1, new_rating2):
191
+ # Reference the elo_logs table
192
+ table = dynamodb.Table('elo_logs')
193
+
194
+ # Update the table
195
+ table.put_item(
196
+ Item={
197
+ 'arena_battle_id': arena_battle_id,
198
+ 'battle_timestamp': battle_timestamp, # Use the timestamp of the battle
199
+ 'log_timestamp': datetime.now().isoformat(), # Also store the timestamp of the log for completeness
200
+ 'new_rating1': new_rating1,
201
+ 'new_rating2': new_rating2,
202
+ 'all': 'ALL',
203
+ }
204
+ )
205
+
206
+
207
+ def get_elo_score(chatbot_name, elo_scores):
208
+ if chatbot_name in elo_scores:
209
+ return elo_scores[chatbot_name]
210
+
211
+ table = dynamodb.Table('elo_scores')
212
+ response = table.get_item(Key={'chatbot_name': chatbot_name})
213
+
214
+ # If there is no item in the table, return a default score
215
+ if 'Item' not in response:
216
+ return 1500
217
+
218
+ return response['Item']['elo_score']
219
+
220
+
221
+ def update_elo_score(chatbot_name, new_elo_score):
222
+ table = dynamodb.Table('elo_scores')
223
+
224
+ # This will create a new item if it doesn't exist
225
+ table.put_item(
226
+ Item={
227
+ 'chatbot_name': chatbot_name,
228
+ 'elo_score': Decimal(str(new_elo_score)),
229
+ }
230
+ )
231
+
232
+
233
+ def get_elo_scores():
234
+ table = dynamodb.Table('elo_scores')
235
+
236
+ response = table.scan()
237
+ data = response['Items']
238
+
239
+ return data
240
+
241
+
242
+ def _backfill_logs():
243
+ table = dynamodb.Table('elo_logs')
244
+
245
+ # Initialize the scan operation
246
+ response = table.scan()
247
+
248
+ for item in response['Items']:
249
+ table.update_item(
250
+ Key={
251
+ 'arena_battle_id': item['arena_battle_id'],
252
+ 'battle_timestamp': item['battle_timestamp']
253
+ },
254
+ UpdateExpression="SET #all = :value",
255
+ ExpressionAttributeNames={
256
+ '#all': 'all'
257
+ },
258
+ ExpressionAttributeValues={
259
+ ':value': 'ALL'
260
+ }
261
+ )
262
+
263
+ def main():
264
+ last_processed_timestamp = get_last_processed_timestamp()
265
+ battles: List[dict] = get_unprocessed_battles(last_processed_timestamp)
266
+ battles = sorted(battles, key=lambda x: x['timestamp'])
267
+ elo_scores = {}
268
+
269
+ for battle in battles:
270
+ print(repr(battle))
271
+ if battle['label'] in {-1, 0, 1, 2}:
272
+ outcome = battle['label']
273
+ for chatbot_name in [battle['choice1_name'], battle['choice2_name']]:
274
+ if chatbot_name not in elo_scores:
275
+ elo_scores[chatbot_name] = get_elo_score(chatbot_name, elo_scores)
276
+ # 1: This means that the first player (or team) won the match.
277
+ # 0.5: This means that the match ended in a draw.
278
+ # 0: This means that the first player (or team) lost the match.
279
+ if outcome == 0 or outcome == -1:
280
+ elo_result = 0.5
281
+ elif outcome == 1:
282
+ elo_result = 1
283
+ else:
284
+ elo_result = 0
285
+
286
+ new_rating1, new_rating2 = calculate_elo(elo_scores[battle['choice1_name']], elo_scores[battle['choice2_name']], elo_result)
287
+ logging.info(f"{battle['choice1_name']}: {elo_scores[battle['choice1_name']]} -> {new_rating1} | {battle['choice2_name']}: {elo_scores[battle['choice2_name']]} -> {new_rating2}")
288
+ elo_scores[battle['choice1_name']] = new_rating1
289
+ elo_scores[battle['choice2_name']] = new_rating2
290
+ log_elo_update(battle['arena_battle_id'], battle['timestamp'], new_rating1, new_rating2)
291
+ update_elo_score(battle['choice1_name'], new_rating1)
292
+ update_elo_score(battle['choice2_name'], new_rating2)
293
+ elo_scores[battle['choice1_name']] = new_rating1
294
+ elo_scores[battle['choice2_name']] = new_rating2
295
+
296
+ elo_scores = get_elo_scores()
297
+ for i, j in enumerate(elo_scores):
298
+ j["elo_score"] = float(j["elo_score"])
299
+ elo_scores[i] = j
300
+ print(elo_scores)
301
+
302
+ if battles:
303
+ # Convert the data into a format suitable for Hugging Face Dataset
304
+ elo_dataset = Dataset.from_list(elo_scores)
305
+ elo_dataset.push_to_hub("openaccess-ai-collective/chatbot-arena-elo-scores", private=False)
306
+
307
+
308
+ if __name__ == "__main__":
309
+ main()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pyyaml
2
+ requests
3
+ boto3