CLIPInverter / align_faces_parallel.py
johnberg's picture
Update align_faces_parallel.py
96ae396
raw
history blame
7.02 kB
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from
https://github.com/NVlabs/ffhq-dataset
http://dlib.net/face_landmark_detection.py.html
requirements:
apt install cmake
conda install Pillow numpy scipy
pip install dlib
# download face landmark model from:
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
from argparse import ArgumentParser
import time
import numpy as np
import PIL
import PIL.Image
import os
import scipy
import scipy.ndimage
import dlib
import multiprocessing as mp
import math
SHAPE_PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
def get_landmark(img, predictor):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
# img = dlib.load_rgb_image(filepath)
img = img
img = np.uint8(np.array(img))
dets = detector(img, 1)
shape = None
for k, d in enumerate(dets):
shape = predictor(img, d)
if not shape:
# raise Exception("Could not find face in image! Please try another image!")
return None
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
return lm
def align_face(img, predictor, output_size=256, transform_size=256):
"""
:param filepath: str
:return: PIL Image
"""
lm = get_landmark(img, predictor)
if lm is None:
return None
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# read image
img = img
enable_padding = True
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.LANCZOS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.LANCZOS)
# Save aligned image.
return img
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def extract_on_paths(file_paths):
predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH)
pid = mp.current_process().name
print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
tot_count = len(file_paths)
count = 0
for file_path, res_path in file_paths:
count += 1
if count % 100 == 0:
print('{} done with {}/{}'.format(pid, count, tot_count))
try:
res = align_face(file_path, predictor)
res = res.convert('RGB')
os.makedirs(os.path.dirname(res_path), exist_ok=True)
res.save(res_path)
except Exception:
continue
print('\tDone!')
def parse_args():
parser = ArgumentParser(add_help=False)
parser.add_argument('--num_threads', type=int, default=1)
parser.add_argument('--root_path', type=str, default='')
args = parser.parse_args()
return args
def run(args):
root_path = args.root_path
out_crops_path = root_path + '_crops'
if not os.path.exists(out_crops_path):
os.makedirs(out_crops_path, exist_ok=True)
file_paths = []
for root, dirs, files in os.walk(root_path):
for file in files:
file_path = os.path.join(root, file)
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
res_path = '{}.jpg'.format(os.path.splitext(fname)[0])
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path):
continue
file_paths.append((file_path, res_path))
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
print(len(file_chunks))
pool = mp.Pool(args.num_threads)
print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
tic = time.time()
pool.map(extract_on_paths, file_chunks)
toc = time.time()
print('Mischief managed in {}s'.format(toc - tic))
if __name__ == '__main__':
args = parse_args()
run(args)