""" brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) author: lzhbrian (https://lzhbrian.me) date: 2020.1.5 note: code is heavily borrowed from https://github.com/NVlabs/ffhq-dataset http://dlib.net/face_landmark_detection.py.html requirements: apt install cmake conda install Pillow numpy scipy pip install dlib # download face landmark model from: # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 """ from argparse import ArgumentParser import time import numpy as np import PIL import PIL.Image import os import scipy import scipy.ndimage import dlib import multiprocessing as mp import math SHAPE_PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat" def get_landmark(img, predictor): """get landmark with dlib :return: np.array shape=(68, 2) """ detector = dlib.get_frontal_face_detector() # img = dlib.load_rgb_image(filepath) img = img img = np.uint8(np.array(img)) dets = detector(img, 1) shape = None for k, d in enumerate(dets): shape = predictor(img, d) if not shape: # raise Exception("Could not find face in image! Please try another image!") return None t = list(shape.parts()) a = [] for tt in t: a.append([tt.x, tt.y]) lm = np.array(a) return lm def align_face(img, predictor, output_size=256, transform_size=256): """ :param filepath: str :return: PIL Image """ lm = get_landmark(img, predictor) if lm is None: return None lm_chin = lm[0: 17] # left-right lm_eyebrow_left = lm[17: 22] # left-right lm_eyebrow_right = lm[22: 27] # left-right lm_nose = lm[27: 31] # top-down lm_nostrils = lm[31: 36] # top-down lm_eye_left = lm[36: 42] # left-clockwise lm_eye_right = lm[42: 48] # left-clockwise lm_mouth_outer = lm[48: 60] # left-clockwise lm_mouth_inner = lm[60: 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 # read image img = img enable_padding = True # Shrink. shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, PIL.Image.LANCZOS) quad /= shrink qsize /= shrink # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] # Transform. img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), PIL.Image.LANCZOS) # Save aligned image. return img def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def extract_on_paths(file_paths): predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH) pid = mp.current_process().name print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths))) tot_count = len(file_paths) count = 0 for file_path, res_path in file_paths: count += 1 if count % 100 == 0: print('{} done with {}/{}'.format(pid, count, tot_count)) try: res = align_face(file_path, predictor) res = res.convert('RGB') os.makedirs(os.path.dirname(res_path), exist_ok=True) res.save(res_path) except Exception: continue print('\tDone!') def parse_args(): parser = ArgumentParser(add_help=False) parser.add_argument('--num_threads', type=int, default=1) parser.add_argument('--root_path', type=str, default='') args = parser.parse_args() return args def run(args): root_path = args.root_path out_crops_path = root_path + '_crops' if not os.path.exists(out_crops_path): os.makedirs(out_crops_path, exist_ok=True) file_paths = [] for root, dirs, files in os.walk(root_path): for file in files: file_path = os.path.join(root, file) fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path)) res_path = '{}.jpg'.format(os.path.splitext(fname)[0]) if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path): continue file_paths.append((file_path, res_path)) file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads)))) print(len(file_chunks)) pool = mp.Pool(args.num_threads) print('Running on {} paths\nHere we goooo'.format(len(file_paths))) tic = time.time() pool.map(extract_on_paths, file_chunks) toc = time.time() print('Mischief managed in {}s'.format(toc - tic)) if __name__ == '__main__': args = parse_args() run(args)