|
import os |
|
import sys |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
import argparse |
|
import torch |
|
import numpy as np |
|
import json |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
|
|
import uuid |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
import glob |
|
import time |
|
import copy |
|
from collections import Counter |
|
from models.soundstream_hubert_new import SoundStream |
|
from vocoder import build_codec_model, process_audio |
|
from post_process_audio import replace_low_freq_with_energy_matched |
|
import re |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.") |
|
parser.add_argument("--stage2_model", type=str, default="m-a-p/YuE-s2-1B-general", help="The model checkpoint path or identifier for the Stage 2 model.") |
|
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.") |
|
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.") |
|
parser.add_argument("--stage2_batch_size", type=int, default=4, help="The batch size used in Stage 2 inference.") |
|
|
|
parser.add_argument("--genre_txt", type=str, required=True, help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") |
|
parser.add_argument("--lyrics_txt", type=str, required=True, help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") |
|
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.") |
|
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.") |
|
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.") |
|
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.") |
|
|
|
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.") |
|
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.") |
|
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.") |
|
parser.add_argument("--cuda_idx", type=int, default=0) |
|
|
|
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.') |
|
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.') |
|
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.') |
|
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.') |
|
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.') |
|
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.') |
|
|
|
|
|
args = parser.parse_args() |
|
if args.use_audio_prompt and not args.audio_prompt_path: |
|
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") |
|
stage1_model = args.stage1_model |
|
stage2_model = args.stage2_model |
|
cuda_idx = args.cuda_idx |
|
max_new_tokens = args.max_new_tokens |
|
stage1_output_dir = os.path.join(args.output_dir, f"stage1") |
|
stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2') |
|
os.makedirs(stage1_output_dir, exist_ok=True) |
|
os.makedirs(stage2_output_dir, exist_ok=True) |
|
|
|
|
|
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
print(f"Using device: {device}") |
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
stage1_model, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
) |
|
model.to(device) |
|
model.eval() |
|
|
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
codectool_stage2 = CodecManipulator("xcodec", 0, 8) |
|
model_config = OmegaConf.load(args.basic_model_config) |
|
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load(args.resume_path, map_location='cpu') |
|
codec_model.load_state_dict(parameter_dict['codec_model']) |
|
codec_model.to(device) |
|
codec_model.eval() |
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
|
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
def load_audio_mono(filepath, sampling_rate=16000): |
|
audio, sr = torchaudio.load(filepath) |
|
|
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
|
if sr != sampling_rate: |
|
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) |
|
audio = resampler(audio) |
|
return audio |
|
|
|
def split_lyrics(lyrics): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
return structured_lyrics |
|
|
|
|
|
stage1_output_set = [] |
|
|
|
|
|
|
|
|
|
with open(args.genre_txt) as f: |
|
genres = f.read().strip() |
|
print(genres) |
|
with open(args.lyrics_txt) as f: |
|
lyrics = split_lyrics(f.read()) |
|
print(lyrics) |
|
|
|
full_lyrics = "\n".join(lyrics) |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] |
|
prompt_texts += lyrics |
|
print(prompt_texts) |
|
|
|
random_id = uuid.uuid4() |
|
output_seq = None |
|
|
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
|
|
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') |
|
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') |
|
|
|
run_n_segments = min(args.run_n_segments+1, len(lyrics)) |
|
print(f"RUN N SEGMENTS: {run_n_segments}") |
|
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): |
|
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
guidance_scale = 1.5 if i <=1 else 1.2 |
|
if i==0: |
|
continue |
|
if i==1: |
|
if args.use_audio_prompt: |
|
audio_prompt = load_audio_mono(args.audio_prompt_path) |
|
audio_prompt.unsqueeze_(0) |
|
with torch.no_grad(): |
|
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) |
|
raw_codes = raw_codes.transpose(0, 1) |
|
raw_codes = raw_codes.cpu().numpy().astype(np.int16) |
|
|
|
code_ids = codectool.npy2ids(raw_codes[0]) |
|
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] |
|
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids |
|
else: |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) |
|
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
else: |
|
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
|
|
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) |
|
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids |
|
|
|
max_context = 16384-max_new_tokens-1 |
|
if input_ids.shape[-1] > max_context: |
|
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') |
|
input_ids = input_ids[:, -(max_context):] |
|
with torch.no_grad(): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), |
|
guidance_scale=guidance_scale, |
|
) |
|
if output_seq[0][-1].item() != mmtokenizer.eoa: |
|
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) |
|
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) |
|
if i > 1: |
|
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) |
|
else: |
|
raw_output = output_seq |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() |
|
if len(soa_idx)!=len(eoa_idx): |
|
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') |
|
|
|
vocals = [] |
|
instrumentals = [] |
|
range_begin = 1 if args.use_audio_prompt else 0 |
|
for i in range(range_begin, len(soa_idx)): |
|
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] |
|
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0]) |
|
vocals.append(vocals_ids) |
|
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1]) |
|
instrumentals.append(instrumentals_ids) |
|
vocals = np.concatenate(vocals, axis=1) |
|
instrumentals = np.concatenate(instrumentals, axis=1) |
|
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy') |
|
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy') |
|
np.save(vocal_save_path, vocals) |
|
np.save(inst_save_path, instrumentals) |
|
stage1_output_set.append(vocal_save_path) |
|
stage1_output_set.append(inst_save_path) |
|
|
|
|
|
|
|
if not args.disable_offload_model: |
|
model.cpu() |
|
del model |
|
torch.cuda.empty_cache() |
|
|
|
print("Stage 2 inference...") |
|
model_stage2 = AutoModelForCausalLM.from_pretrained( |
|
stage2_model, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2" |
|
) |
|
model_stage2.to(device) |
|
model_stage2.eval() |
|
|
|
def stage2_generate(model, prompt, batch_size=16): |
|
codec_ids = codectool.unflatten(prompt, n_quantizer=1) |
|
codec_ids = codectool.offset_tok_ids( |
|
codec_ids, |
|
global_offset=codectool.global_offset, |
|
codebook_size=codectool.codebook_size, |
|
num_codebooks=codectool.num_codebooks, |
|
).astype(np.int32) |
|
|
|
|
|
if batch_size > 1: |
|
codec_list = [] |
|
for i in range(batch_size): |
|
idx_begin = i * 300 |
|
idx_end = (i + 1) * 300 |
|
codec_list.append(codec_ids[:, idx_begin:idx_end]) |
|
|
|
codec_ids = np.concatenate(codec_list, axis=0) |
|
prompt_ids = np.concatenate( |
|
[ |
|
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)), |
|
codec_ids, |
|
np.tile([mmtokenizer.stage_2], (batch_size, 1)), |
|
], |
|
axis=1 |
|
) |
|
else: |
|
prompt_ids = np.concatenate([ |
|
np.array([mmtokenizer.soa, mmtokenizer.stage_1]), |
|
codec_ids.flatten(), |
|
np.array([mmtokenizer.stage_2]) |
|
]).astype(np.int32) |
|
prompt_ids = prompt_ids[np.newaxis, ...] |
|
|
|
codec_ids = torch.as_tensor(codec_ids).to(device) |
|
prompt_ids = torch.as_tensor(prompt_ids).to(device) |
|
len_prompt = prompt_ids.shape[-1] |
|
|
|
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)]) |
|
|
|
|
|
for frames_idx in range(codec_ids.shape[1]): |
|
cb0 = codec_ids[:, frames_idx:frames_idx+1] |
|
prompt_ids = torch.cat([prompt_ids, cb0], dim=1) |
|
input_ids = prompt_ids |
|
|
|
with torch.no_grad(): |
|
stage2_output = model.generate(input_ids=input_ids, |
|
min_new_tokens=7, |
|
max_new_tokens=7, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=block_list, |
|
) |
|
|
|
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}" |
|
prompt_ids = stage2_output |
|
|
|
|
|
if batch_size > 1: |
|
output = prompt_ids.cpu().numpy()[:, len_prompt:] |
|
output_list = [output[i] for i in range(batch_size)] |
|
output = np.concatenate(output_list, axis=0) |
|
else: |
|
output = prompt_ids[0].cpu().numpy()[len_prompt:] |
|
|
|
return output |
|
|
|
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=4): |
|
stage2_result = [] |
|
for i in tqdm(range(len(stage1_output_set))): |
|
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i])) |
|
|
|
if os.path.exists(output_filename): |
|
print(f'{output_filename} stage2 has done.') |
|
continue |
|
|
|
|
|
prompt = np.load(stage1_output_set[i]).astype(np.int32) |
|
|
|
|
|
output_duration = prompt.shape[-1] // 50 // 6 * 6 |
|
num_batch = output_duration // 6 |
|
|
|
if num_batch <= batch_size: |
|
|
|
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch) |
|
else: |
|
|
|
segments = [] |
|
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0) |
|
|
|
for seg in range(num_segments): |
|
start_idx = seg * batch_size * 300 |
|
|
|
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) |
|
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size |
|
segment = stage2_generate( |
|
model, |
|
prompt[:, start_idx:end_idx], |
|
batch_size=current_batch_size |
|
) |
|
segments.append(segment) |
|
|
|
|
|
output = np.concatenate(segments, axis=0) |
|
|
|
|
|
if output_duration*50 != prompt.shape[-1]: |
|
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1) |
|
output = np.concatenate([output, ending], axis=0) |
|
output = codectool_stage2.ids2npy(output) |
|
|
|
|
|
|
|
fixed_output = copy.deepcopy(output) |
|
for i, line in enumerate(output): |
|
for j, element in enumerate(line): |
|
if element < 0 or element > 1023: |
|
counter = Counter(line) |
|
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0] |
|
fixed_output[i, j] = most_frequant |
|
|
|
np.save(output_filename, fixed_output) |
|
stage2_result.append(output_filename) |
|
return stage2_result |
|
|
|
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=args.stage2_batch_size) |
|
print(stage2_result) |
|
print('Stage 2 DONE.\n') |
|
|
|
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): |
|
folder_path = os.path.dirname(path) |
|
if not os.path.exists(folder_path): |
|
os.makedirs(folder_path) |
|
limit = 0.99 |
|
max_val = wav.abs().max() |
|
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) |
|
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) |
|
|
|
recons_output_dir = os.path.join(args.output_dir, "recons") |
|
recons_mix_dir = os.path.join(recons_output_dir, 'mix') |
|
os.makedirs(recons_mix_dir, exist_ok=True) |
|
tracks = [] |
|
for npy in stage2_result: |
|
codec_result = np.load(npy) |
|
decodec_rlt=[] |
|
with torch.no_grad(): |
|
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) |
|
decoded_waveform = decoded_waveform.cpu().squeeze(0) |
|
decodec_rlt.append(torch.as_tensor(decoded_waveform)) |
|
decodec_rlt = torch.cat(decodec_rlt, dim=-1) |
|
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") |
|
tracks.append(save_path) |
|
save_audio(decodec_rlt, save_path, 16000) |
|
|
|
for inst_path in tracks: |
|
try: |
|
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ |
|
and 'instrumental' in inst_path: |
|
|
|
vocal_path = inst_path.replace('instrumental', 'vocal') |
|
if not os.path.exists(vocal_path): |
|
continue |
|
|
|
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) |
|
vocal_stem, sr = sf.read(inst_path) |
|
instrumental_stem, _ = sf.read(vocal_path) |
|
mix_stem = (vocal_stem + instrumental_stem) / 1 |
|
sf.write(recons_mix, mix_stem, sr) |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path) |
|
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder') |
|
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') |
|
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') |
|
os.makedirs(vocoder_mix_dir, exist_ok=True) |
|
os.makedirs(vocoder_stems_dir, exist_ok=True) |
|
for npy in stage2_result: |
|
if 'instrumental' in npy: |
|
|
|
instrumental_output = process_audio( |
|
npy, |
|
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), |
|
args.rescale, |
|
args, |
|
inst_decoder, |
|
codec_model |
|
) |
|
else: |
|
|
|
vocal_output = process_audio( |
|
npy, |
|
os.path.join(vocoder_stems_dir, 'vocal.mp3'), |
|
args.rescale, |
|
args, |
|
vocal_decoder, |
|
codec_model |
|
) |
|
|
|
try: |
|
mix_output = instrumental_output + vocal_output |
|
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) |
|
save_audio(mix_output, vocoder_mix, 44100, args.rescale) |
|
print(f"Created mix: {vocoder_mix}") |
|
except RuntimeError as e: |
|
print(e) |
|
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") |
|
|
|
|
|
replace_low_freq_with_energy_matched( |
|
a_file=recons_mix, |
|
b_file=vocoder_mix, |
|
c_file=os.path.join(args.output_dir, os.path.basename(recons_mix)), |
|
cutoff_freq=5500.0 |
|
) |