File size: 21,529 Bytes
994ad86 d4b2e40 e7ce4db 994ad86 331e025 994ad86 20db9fe 36b0ce1 994ad86 36b0ce1 994ad86 36b0ce1 994ad86 9d6705c 994ad86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import os
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
import argparse
import torch
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
import uuid
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
import re
parser = argparse.ArgumentParser()
# Model Configuration:
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.")
parser.add_argument("--stage2_model", type=str, default="m-a-p/YuE-s2-1B-general", help="The model checkpoint path or identifier for the Stage 2 model.")
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.")
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.")
parser.add_argument("--stage2_batch_size", type=int, default=4, help="The batch size used in Stage 2 inference.")
# Prompt
parser.add_argument("--genre_txt", type=str, required=True, help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.")
parser.add_argument("--lyrics_txt", type=str, required=True, help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.")
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.")
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.")
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.")
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.")
# Output
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.")
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.")
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.")
parser.add_argument("--cuda_idx", type=int, default=0)
# Config for xcodec and upsampler
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.')
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.')
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.')
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.')
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.')
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.')
args = parser.parse_args()
if args.use_audio_prompt and not args.audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
stage1_model = args.stage1_model
stage2_model = args.stage2_model
cuda_idx = args.cuda_idx
max_new_tokens = args.max_new_tokens
stage1_output_dir = os.path.join(args.output_dir, f"stage1")
stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2')
os.makedirs(stage1_output_dir, exist_ok=True)
os.makedirs(stage2_output_dir, exist_ok=True)
# load tokenizer and model
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
# Now you can use `device` to move your tensors or models to the GPU (if available)
print(f"Using device: {device}")
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
model = AutoModelForCausalLM.from_pretrained(
stage1_model,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
)
model.to(device)
model.eval()
codectool = CodecManipulator("xcodec", 0, 1)
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
model_config = OmegaConf.load(args.basic_model_config)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(args.resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.to(device)
codec_model.eval()
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
# Call the function and print the result
stage1_output_set = []
# Tips:
# genre tags support instrumental,genre,mood,vocal timbr and vocal gender
# all kinds of tags are needed
# Ensure files exist
with open(args.genre_txt) as f:
genres = f.read().strip()
print(genres)
with open(args.lyrics_txt) as f:
lyrics = split_lyrics(f.read())
print(lyrics)
# intruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
print(prompt_texts)
random_id = uuid.uuid4()
output_seq = None
# Here is suggested decoding config
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
# special tokens
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
# Format text prompt
run_n_segments = min(args.run_n_segments+1, len(lyrics))
print(f"RUN N SEGMENTS: {run_n_segments}")
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <=1 else 1.2
if i==0:
continue
if i==1:
if args.use_audio_prompt:
audio_prompt = load_audio_mono(args.audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384-max_new_tokens-1
if input_ids.shape[-1] > max_context:
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.no_grad():
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx)!=len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if args.use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
# offload model
if not args.disable_offload_model:
model.cpu()
del model
torch.cuda.empty_cache()
print("Stage 2 inference...")
model_stage2 = AutoModelForCausalLM.from_pretrained(
stage2_model,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
)
model_stage2.to(device)
model_stage2.eval()
def stage2_generate(model, prompt, batch_size=16):
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
codec_ids = codectool.offset_tok_ids(
codec_ids,
global_offset=codectool.global_offset,
codebook_size=codectool.codebook_size,
num_codebooks=codectool.num_codebooks,
).astype(np.int32)
# Prepare prompt_ids based on batch size or single input
if batch_size > 1:
codec_list = []
for i in range(batch_size):
idx_begin = i * 300
idx_end = (i + 1) * 300
codec_list.append(codec_ids[:, idx_begin:idx_end])
codec_ids = np.concatenate(codec_list, axis=0)
prompt_ids = np.concatenate(
[
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
codec_ids,
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
],
axis=1
)
else:
prompt_ids = np.concatenate([
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
codec_ids.flatten(), # Flatten the 2D array to 1D
np.array([mmtokenizer.stage_2])
]).astype(np.int32)
prompt_ids = prompt_ids[np.newaxis, ...]
codec_ids = torch.as_tensor(codec_ids).to(device)
prompt_ids = torch.as_tensor(prompt_ids).to(device)
len_prompt = prompt_ids.shape[-1]
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
# Teacher forcing generate loop
for frames_idx in range(codec_ids.shape[1]):
cb0 = codec_ids[:, frames_idx:frames_idx+1]
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
input_ids = prompt_ids
with torch.no_grad():
stage2_output = model.generate(input_ids=input_ids,
min_new_tokens=7,
max_new_tokens=7,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=block_list,
)
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
prompt_ids = stage2_output
# Return output based on batch size
if batch_size > 1:
output = prompt_ids.cpu().numpy()[:, len_prompt:]
output_list = [output[i] for i in range(batch_size)]
output = np.concatenate(output_list, axis=0)
else:
output = prompt_ids[0].cpu().numpy()[len_prompt:]
return output
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=4):
stage2_result = []
for i in tqdm(range(len(stage1_output_set))):
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
if os.path.exists(output_filename):
print(f'{output_filename} stage2 has done.')
continue
# Load the prompt
prompt = np.load(stage1_output_set[i]).astype(np.int32)
# Only accept 6s segments
output_duration = prompt.shape[-1] // 50 // 6 * 6
num_batch = output_duration // 6
if num_batch <= batch_size:
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
else:
# If num_batch is greater than batch_size, process in chunks of batch_size
segments = []
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
for seg in range(num_segments):
start_idx = seg * batch_size * 300
# Ensure the end_idx does not exceed the available length
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
segment = stage2_generate(
model,
prompt[:, start_idx:end_idx],
batch_size=current_batch_size
)
segments.append(segment)
# Concatenate all the segments
output = np.concatenate(segments, axis=0)
# Process the ending part of the prompt
if output_duration*50 != prompt.shape[-1]:
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
output = np.concatenate([output, ending], axis=0)
output = codectool_stage2.ids2npy(output)
# Fix invalid codes (a dirty solution, which may harm the quality of audio)
# We are trying to find better one
fixed_output = copy.deepcopy(output)
for i, line in enumerate(output):
for j, element in enumerate(line):
if element < 0 or element > 1023:
counter = Counter(line)
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
fixed_output[i, j] = most_frequant
# save output
np.save(output_filename, fixed_output)
stage2_result.append(output_filename)
return stage2_result
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=args.stage2_batch_size)
print(stage2_result)
print('Stage 2 DONE.\n')
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks
recons_output_dir = os.path.join(args.output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage2_result:
codec_result = np.load(npy)
decodec_rlt=[]
with torch.no_grad():
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
# vocoder to upsample audios
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path)
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder')
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
os.makedirs(vocoder_mix_dir, exist_ok=True)
os.makedirs(vocoder_stems_dir, exist_ok=True)
for npy in stage2_result:
if 'instrumental' in npy:
# Process instrumental
instrumental_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
args.rescale,
args,
inst_decoder,
codec_model
)
else:
# Process vocal
vocal_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
args.rescale,
args,
vocal_decoder,
codec_model
)
# mix tracks
try:
mix_output = instrumental_output + vocal_output
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
save_audio(mix_output, vocoder_mix, 44100, args.rescale)
print(f"Created mix: {vocoder_mix}")
except RuntimeError as e:
print(e)
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
# Post process
replace_low_freq_with_energy_matched(
a_file=recons_mix, # 16kHz
b_file=vocoder_mix, # 48kHz
c_file=os.path.join(args.output_dir, os.path.basename(recons_mix)),
cutoff_freq=5500.0
) |