File size: 4,517 Bytes
5eeb557
 
 
 
 
 
 
 
 
 
 
fa7b0cc
5eeb557
 
fa7b0cc
5eeb557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8612fe9
fa7b0cc
5eeb557
fa7b0cc
5eeb557
 
c708775
5eeb557
 
fa7b0cc
5eeb557
 
 
 
 
fa7b0cc
5eeb557
 
fa7b0cc
5eeb557
 
 
 
 
 
fa7b0cc
 
 
 
 
 
5eeb557
 
 
 
6969d97
c708775
 
5eeb557
 
 
c708775
 
5eeb557
 
 
 
 
 
 
 
 
 
c683c90
5eeb557
 
 
 
c683c90
5eeb557
fa7b0cc
06bf753
 
c683c90
5eeb557
 
 
 
 
 
c683c90
5eeb557
fa7b0cc
06bf753
 
c683c90
5eeb557
c708775
 
fa7b0cc
5eeb557
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from __future__ import annotations

import pathlib
import sys
import zipfile

import huggingface_hub
import numpy as np
import PIL.Image
import torch

sys.path.insert(0, "Text2Human")

from models.sample_model import SampleFromPoseModel
from utils.language_utils import generate_shape_attributes, generate_texture_attributes
from utils.options import dict_to_nonedict, parse
from utils.util import set_random_seed

COLOR_LIST = [
    (0, 0, 0),
    (255, 250, 250),
    (220, 220, 220),
    (250, 235, 215),
    (255, 250, 205),
    (211, 211, 211),
    (70, 130, 180),
    (127, 255, 212),
    (0, 100, 0),
    (50, 205, 50),
    (255, 255, 0),
    (245, 222, 179),
    (255, 140, 0),
    (255, 0, 0),
    (16, 78, 139),
    (144, 238, 144),
    (50, 205, 174),
    (50, 155, 250),
    (160, 140, 88),
    (213, 140, 88),
    (90, 140, 90),
    (185, 210, 205),
    (130, 165, 180),
    (225, 141, 151),
]


class Model:
    def __init__(self):
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.config = self._load_config()
        self.config["device"] = device.type
        self._download_models()
        self.model = SampleFromPoseModel(self.config)
        self.model.batch_size = 1

    def _load_config(self) -> dict:
        path = "Text2Human/configs/sample_from_pose.yml"
        config = parse(path, is_train=False)
        config = dict_to_nonedict(config)
        return config

    def _download_models(self) -> None:
        model_dir = pathlib.Path("pretrained_models")
        if model_dir.exists():
            return
        path = huggingface_hub.hf_hub_download("yumingj/Text2Human_SSHQ", "pretrained_models.zip")
        model_dir.mkdir()
        with zipfile.ZipFile(path) as f:
            f.extractall(model_dir)

    @staticmethod
    def preprocess_pose_image(image: PIL.Image.Image) -> torch.Tensor:
        image = (
            np.array(image.resize(size=(256, 512), resample=PIL.Image.Resampling.LANCZOS))[:, :, 2:]
            .transpose(2, 0, 1)
            .astype(np.float32)
        )
        image = image / 12.0 - 1
        data = torch.from_numpy(image).unsqueeze(1)
        return data

    @staticmethod
    def process_mask(mask: np.ndarray) -> np.ndarray:
        if mask.shape != (512, 256, 3):
            return None
        seg_map = np.full(mask.shape[:-1], -1)
        for index, color in enumerate(COLOR_LIST):
            seg_map[np.sum(mask == color, axis=2) == 3] = index
        if not (seg_map != -1).all():
            return None
        return seg_map

    @staticmethod
    def postprocess(result: torch.Tensor) -> np.ndarray:
        result = result.permute(0, 2, 3, 1)
        result = result.detach().cpu().numpy()
        result = result * 255
        result = np.asarray(result[0, :, :, :], dtype=np.uint8)
        return result

    def process_pose_image(self, pose_image: PIL.Image.Image) -> torch.Tensor:
        if pose_image is None:
            return
        data = self.preprocess_pose_image(pose_image)
        self.model.feed_pose_data(data)
        return data

    def generate_label_image(self, pose_data: torch.Tensor, shape_text: str) -> np.ndarray:
        if pose_data is None:
            return
        self.model.feed_pose_data(pose_data)
        shape_attributes = generate_shape_attributes(shape_text)
        shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0)
        self.model.feed_shape_attributes(shape_attributes)
        self.model.generate_parsing_map()
        self.model.generate_quantized_segm()
        colored_segm = self.model.palette_result(self.model.segm[0].cpu())
        return colored_segm

    def generate_human(self, label_image: np.ndarray, texture_text: str, sample_steps: int, seed: int) -> np.ndarray:
        if label_image is None:
            return
        mask = label_image.copy()
        seg_map = self.process_mask(mask)
        if seg_map is None:
            return
        self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze(0).to(self.model.device)
        self.model.generate_quantized_segm()

        set_random_seed(seed)

        texture_attributes = generate_texture_attributes(texture_text)
        texture_attributes = torch.LongTensor(texture_attributes)
        self.model.feed_texture_attributes(texture_attributes)
        self.model.generate_texture_map()

        self.model.sample_steps = sample_steps
        out = self.model.sample_and_refine()
        res = self.postprocess(out)
        return res