hysts HF staff commited on
Commit
8612fe9
·
1 Parent(s): 75ce3d8
Files changed (5) hide show
  1. .pre-commit-config.yaml +2 -12
  2. README.md +1 -1
  3. app.py +103 -123
  4. model.py +3 -3
  5. requirements.txt +1 -1
.pre-commit-config.yaml CHANGED
@@ -21,11 +21,11 @@ repos:
21
  - id: docformatter
22
  args: ['--in-place']
23
  - repo: https://github.com/pycqa/isort
24
- rev: 5.10.1
25
  hooks:
26
  - id: isort
27
  - repo: https://github.com/pre-commit/mirrors-mypy
28
- rev: v0.812
29
  hooks:
30
  - id: mypy
31
  args: ['--ignore-missing-imports']
@@ -34,13 +34,3 @@ repos:
34
  hooks:
35
  - id: yapf
36
  args: ['--parallel', '--in-place']
37
- - repo: https://github.com/kynan/nbstripout
38
- rev: 0.5.0
39
- hooks:
40
- - id: nbstripout
41
- args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
42
- - repo: https://github.com/nbQA-dev/nbQA
43
- rev: 1.3.1
44
- hooks:
45
- - id: nbqa-isort
46
- - id: nbqa-yapf
 
21
  - id: docformatter
22
  args: ['--in-place']
23
  - repo: https://github.com/pycqa/isort
24
+ rev: 5.12.0
25
  hooks:
26
  - id: isort
27
  - repo: https://github.com/pre-commit/mirrors-mypy
28
+ rev: v0.991
29
  hooks:
30
  - id: mypy
31
  args: ['--ignore-missing-imports']
 
34
  hooks:
35
  - id: yapf
36
  args: ['--parallel', '--in-place']
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🏃
4
  colorFrom: purple
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 3.0.17
8
  app_file: app.py
9
  pinned: false
10
  ---
 
4
  colorFrom: purple
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.19.1
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py CHANGED
@@ -2,9 +2,9 @@
2
 
3
  from __future__ import annotations
4
 
5
- import argparse
6
  import os
7
  import pathlib
 
8
  import subprocess
9
 
10
  import gradio as gr
@@ -16,7 +16,7 @@ if os.getenv('SYSTEM') == 'spaces':
16
  mim.install('mmcv-full==1.5.2', is_yes=True)
17
 
18
  with open('patch') as f:
19
- subprocess.run('patch -p1'.split(), cwd='Text2Human', stdin=f)
20
 
21
  from model import Model
22
 
@@ -27,132 +27,112 @@ You can modify sample steps and seeds. By varying seeds, you can sample differen
27
 
28
  Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
29
  '''
30
- FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.text2human" />'
31
-
32
-
33
- def parse_args() -> argparse.Namespace:
34
- parser = argparse.ArgumentParser()
35
- parser.add_argument('--device', type=str, default='cpu')
36
- parser.add_argument('--theme', type=str)
37
- parser.add_argument('--share', action='store_true')
38
- parser.add_argument('--port', type=int)
39
- parser.add_argument('--disable-queue',
40
- dest='enable_queue',
41
- action='store_false')
42
- return parser.parse_args()
43
 
44
 
45
  def set_example_image(example: list) -> dict:
46
- return gr.Image.update(value=example[0])
47
 
48
 
49
  def set_example_text(example: list) -> dict:
50
- return gr.Textbox.update(value=example[0])
51
-
52
-
53
- def main():
54
- args = parse_args()
55
- model = Model(args.device)
56
-
57
- with gr.Blocks(theme=args.theme, css='style.css') as demo:
58
- gr.Markdown(DESCRIPTION)
59
-
60
- with gr.Row():
61
- with gr.Column():
62
- with gr.Row():
63
- input_image = gr.Image(label='Input Pose Image',
64
- type='pil',
65
- elem_id='input-image')
66
- pose_data = gr.Variable()
67
- with gr.Row():
68
- paths = sorted(pathlib.Path('pose_images').glob('*.png'))
69
- example_images = gr.Dataset(components=[input_image],
70
- samples=[[path.as_posix()]
71
- for path in paths])
72
-
73
- with gr.Row():
74
- shape_text = gr.Textbox(
75
- label='Shape Description',
76
- placeholder=
77
- '''<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
78
  Note: The outer clothing type and accessories can be omitted.''')
79
- with gr.Row():
80
- shape_example_texts = gr.Dataset(
81
- components=[shape_text],
82
- samples=[['man, sleeveless T-shirt, long pants'],
83
- ['woman, short-sleeve T-shirt, short jeans']])
84
- with gr.Row():
85
- generate_label_button = gr.Button('Generate Label Image')
86
-
87
- with gr.Column():
88
- with gr.Row():
89
- label_image = gr.Image(label='Label Image',
90
- type='numpy',
91
- elem_id='label-image')
92
-
93
- with gr.Row():
94
- texture_text = gr.Textbox(
95
- label='Texture Description',
96
- placeholder=
97
- '''<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
98
  Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.'''
99
- )
100
- with gr.Row():
101
- texture_example_texts = gr.Dataset(
102
- components=[texture_text],
103
- samples=[['pure color, denim'], ['floral, stripe']])
104
- with gr.Row():
105
- sample_steps = gr.Slider(10,
106
- 300,
107
- value=10,
108
- step=10,
109
- label='Sample Steps')
110
- with gr.Row():
111
- seed = gr.Slider(0, 1000000, value=0, step=1, label='Seed')
112
- with gr.Row():
113
- generate_human_button = gr.Button('Generate Human')
114
-
115
- with gr.Column():
116
- with gr.Row():
117
- result = gr.Image(label='Result',
118
- type='numpy',
119
- elem_id='result-image')
120
-
121
- gr.Markdown(FOOTER)
122
-
123
- input_image.change(fn=model.process_pose_image,
124
- inputs=input_image,
125
- outputs=pose_data)
126
- generate_label_button.click(fn=model.generate_label_image,
127
- inputs=[
128
- pose_data,
129
- shape_text,
130
- ],
131
- outputs=label_image)
132
- generate_human_button.click(fn=model.generate_human,
133
- inputs=[
134
- label_image,
135
- texture_text,
136
- sample_steps,
137
- seed,
138
- ],
139
- outputs=result)
140
- example_images.click(fn=set_example_image,
141
- inputs=example_images,
142
- outputs=example_images.components)
143
- shape_example_texts.click(fn=set_example_text,
144
- inputs=shape_example_texts,
145
- outputs=shape_example_texts.components)
146
- texture_example_texts.click(fn=set_example_text,
147
- inputs=texture_example_texts,
148
- outputs=texture_example_texts.components)
149
-
150
- demo.launch(
151
- enable_queue=args.enable_queue,
152
- server_port=args.port,
153
- share=args.share,
154
- )
155
-
156
-
157
- if __name__ == '__main__':
158
- main()
 
2
 
3
  from __future__ import annotations
4
 
 
5
  import os
6
  import pathlib
7
+ import shlex
8
  import subprocess
9
 
10
  import gradio as gr
 
16
  mim.install('mmcv-full==1.5.2', is_yes=True)
17
 
18
  with open('patch') as f:
19
+ subprocess.run(shlex.split('patch -p1'), cwd='Text2Human', stdin=f)
20
 
21
  from model import Model
22
 
 
27
 
28
  Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
29
  '''
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
 
32
  def set_example_image(example: list) -> dict:
33
+ return gr.update(value=example[0])
34
 
35
 
36
  def set_example_text(example: list) -> dict:
37
+ return gr.update(value=example[0])
38
+
39
+
40
+ model = Model()
41
+
42
+ with gr.Blocks(css='style.css') as demo:
43
+ gr.Markdown(DESCRIPTION)
44
+
45
+ with gr.Row():
46
+ with gr.Column():
47
+ with gr.Row():
48
+ input_image = gr.Image(label='Input Pose Image',
49
+ type='pil',
50
+ elem_id='input-image')
51
+ pose_data = gr.State()
52
+ with gr.Row():
53
+ paths = sorted(pathlib.Path('pose_images').glob('*.png'))
54
+ example_images = gr.Dataset(components=[input_image],
55
+ samples=[[path.as_posix()]
56
+ for path in paths])
57
+
58
+ with gr.Row():
59
+ shape_text = gr.Textbox(
60
+ label='Shape Description',
61
+ placeholder=
62
+ '''<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
 
 
63
  Note: The outer clothing type and accessories can be omitted.''')
64
+ with gr.Row():
65
+ shape_example_texts = gr.Dataset(
66
+ components=[shape_text],
67
+ samples=[['man, sleeveless T-shirt, long pants'],
68
+ ['woman, short-sleeve T-shirt, short jeans']])
69
+ with gr.Row():
70
+ generate_label_button = gr.Button('Generate Label Image')
71
+
72
+ with gr.Column():
73
+ with gr.Row():
74
+ label_image = gr.Image(label='Label Image',
75
+ type='numpy',
76
+ elem_id='label-image')
77
+
78
+ with gr.Row():
79
+ texture_text = gr.Textbox(
80
+ label='Texture Description',
81
+ placeholder=
82
+ '''<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
83
  Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.'''
84
+ )
85
+ with gr.Row():
86
+ texture_example_texts = gr.Dataset(components=[texture_text],
87
+ samples=[
88
+ ['pure color, denim'],
89
+ ['floral, stripe'],
90
+ ])
91
+ with gr.Row():
92
+ sample_steps = gr.Slider(label='Sample Steps',
93
+ minimum=10,
94
+ maximum=300,
95
+ value=10,
96
+ step=10)
97
+ with gr.Row():
98
+ seed = gr.Slider(0, 1000000, value=0, step=1, label='Seed')
99
+ with gr.Row():
100
+ generate_human_button = gr.Button('Generate Human')
101
+
102
+ with gr.Column():
103
+ with gr.Row():
104
+ result = gr.Image(label='Result',
105
+ type='numpy',
106
+ elem_id='result-image')
107
+
108
+ input_image.change(fn=model.process_pose_image,
109
+ inputs=input_image,
110
+ outputs=pose_data)
111
+ generate_label_button.click(fn=model.generate_label_image,
112
+ inputs=[
113
+ pose_data,
114
+ shape_text,
115
+ ],
116
+ outputs=label_image)
117
+ generate_human_button.click(fn=model.generate_human,
118
+ inputs=[
119
+ label_image,
120
+ texture_text,
121
+ sample_steps,
122
+ seed,
123
+ ],
124
+ outputs=result)
125
+ example_images.click(fn=set_example_image,
126
+ inputs=example_images,
127
+ outputs=example_images.components,
128
+ queue=False)
129
+ shape_example_texts.click(fn=set_example_text,
130
+ inputs=shape_example_texts,
131
+ outputs=shape_example_texts.components,
132
+ queue=False)
133
+ texture_example_texts.click(fn=set_example_text,
134
+ inputs=texture_example_texts,
135
+ outputs=texture_example_texts.components,
136
+ queue=False)
137
+
138
+ demo.queue().launch(show_api=False)
 
 
 
 
 
model.py CHANGED
@@ -1,6 +1,5 @@
1
  from __future__ import annotations
2
 
3
- import os
4
  import pathlib
5
  import sys
6
  import zipfile
@@ -47,9 +46,10 @@ COLOR_LIST = [
47
 
48
 
49
  class Model:
50
- def __init__(self, device: str):
 
51
  self.config = self._load_config()
52
- self.config['device'] = device
53
  self._download_models()
54
  self.model = SampleFromPoseModel(self.config)
55
  self.model.batch_size = 1
 
1
  from __future__ import annotations
2
 
 
3
  import pathlib
4
  import sys
5
  import zipfile
 
46
 
47
 
48
  class Model:
49
+ def __init__(self):
50
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
51
  self.config = self._load_config()
52
+ self.config['device'] = device.type
53
  self._download_models()
54
  self.model = SampleFromPoseModel(self.config)
55
  self.model.batch_size = 1
requirements.txt CHANGED
@@ -5,7 +5,7 @@ mmsegmentation==0.24.1
5
  numpy==1.22.3
6
  openmim==0.1.5
7
  Pillow==9.1.1
8
- sentence-transformers==2.2.0
9
  tokenizers==0.12.1
10
  torch==1.11.0
11
  torchvision==0.12.0
 
5
  numpy==1.22.3
6
  openmim==0.1.5
7
  Pillow==9.1.1
8
+ sentence-transformers==2.2.2
9
  tokenizers==0.12.1
10
  torch==1.11.0
11
  torchvision==0.12.0