Spaces:
Build error
A newer version of the Gradio SDK is available:
5.12.0
title: salad bowl (vampnet)
emoji: 🥗
colorFrom: yellow
colorTo: green
sdk: gradio
sdk_version: 4.43.0
python_version: 3.9.17
app_file: app.py
pinned: false
license: cc-by-nc-4.0
VampNet
This repository contains recipes for training generative music models on top of the Descript Audio Codec.
Setting up
Requires Python 3.9.
you'll need a Python 3.9 environment to run VampNet. This is due to a known issue with madmom.
(for example, using conda)
conda create -n vampnet python=3.9
conda activate vampnet
install VampNet
git clone https://github.com/hugofloresgarcia/vampnet.git
pip install -e ./vampnet
Usage
quick start!
import random
import vampnet
import audiotools as at
# load the default vampnet model
interface = vampnet.interface.Interface.default()
# list available finetuned models
finetuned_model_choices = interface.available_models()
print(f"available finetuned models: {finetuned_model_choices}")
# pick a random finetuned model
model_choice = random.choice(finetuned_model_choices)
print(f"choosing model: {model_choice}")
# load a finetuned model
interface.load_finetuned(model_choice)
# load an example audio file
signal = at.AudioSignal("assets/example.wav")
# get the tokens for the audio
codes = interface.encode(signal)
# build a mask for the audio
mask = interface.build_mask(
codes, signal,
periodic_prompt=7,
upper_codebook_mask=3,
)
# generate the output tokens
output_tokens = interface.vamp(
codes, mask, return_mask=False,
temperature=1.0,
typical_filtering=True,
)
# convert them to a signal
output_signal = interface.decode(output_tokens)
# save the output signal
output_signal.write("scratch/output.wav")
Launching the Gradio Interface
You can launch a gradio UI to play with vampnet.
python app.py --args.load conf/interface.yml --Interface.device cuda
Training / Fine-tuning
Training a model
To train a model, run the following script:
python scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints
for multi-gpu training, use torchrun:
torchrun --nproc_per_node gpu scripts/exp/train.py --args.load conf/vampnet.yml --save_path path/to/ckpt
You can edit conf/vampnet.yml
to change the dataset paths or any training hyperparameters.
For coarse2fine models, you can use conf/c2f.yml
as a starting configuration.
See python scripts/exp/train.py -h
for a list of options.
Debugging training
To debug training, it's easier to debug with 1 gpu and 0 workers
CUDA_VISIBLE_DEVICES=0 python -m pdb scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints --num_workers 0
Fine-tuning
To fine-tune a model, use the script in scripts/exp/fine_tune.py
to generate 3 configuration files: c2f.yml
, coarse.yml
, and interface.yml
.
The first two are used to fine-tune the coarse and fine models, respectively. The last one is used to launch the gradio interface.
python scripts/exp/fine_tune.py "/path/to/audio1.mp3 /path/to/audio2/ /path/to/audio3.wav" <fine_tune_name>
This will create a folder under conf/<fine_tune_name>/
with the 3 configuration files.
The save_paths will be set to runs/<fine_tune_name>/coarse
and runs/<fine_tune_name>/c2f
.
launch the coarse job:
python scripts/exp/train.py --args.load conf/generated/<fine_tune_name>/coarse.yml
this will save the coarse model to runs/<fine_tune_name>/coarse/ckpt/best/
.
launch the c2f job:
python scripts/exp/train.py --args.load conf/generated/<fine_tune_name>/c2f.yml
A note on argbind
This repository relies on argbind to manage CLIs and config files.
Config files are stored in the conf/
folder.
Take a look at the pretrained models
All the pretrained models (trained by hugo) are stored here: https://huggingface.co/hugggof/vampnet
Licensing for Pretrained Models:
The weights for the models are licensed CC BY-NC-SA 4.0
. Likewise, any VampNet models fine-tuned on the pretrained models are also licensed CC BY-NC-SA 4.0
.
Download the pretrained models from this link. Then, extract the models to the models/
folder.