hewliyang
update description in UI
50e4622
import torch
import gradio as gr
import numpy as np
from transformers import (
VitsModel,
VitsTokenizer,
pipeline,
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f"Using {device} with fp {torch_dtype}")
# load speech translation checkpoint
asr_pipe = pipeline( # noqa: F821
"automatic-speech-recognition",
model="openai/whisper-medium",
device=device,
torch_dtype=torch_dtype,
)
# load text-to-speech checkpoint
model = VitsModel.from_pretrained("facebook/mms-tts-zlm")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-zlm")
def synthesise(text):
inputs = tokenizer(text=text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model(input_ids)
speech = outputs["waveform"]
return speech
def translate(audio):
outputs = asr_pipe(
audio,
max_new_tokens=256,
generate_kwargs={"task": "transcribe", "language": "ms"},
)
return outputs["text"]
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech.T
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in **Malay**. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebooks's
[MMS-TTS-ZLM](https://huggingface.co/facebook/mms-tts-zlm) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples="./examples",
title=title,
description=description,
live=True,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()