import torch import gradio as gr import numpy as np from transformers import ( VitsModel, VitsTokenizer, pipeline, ) device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 print(f"Using {device} with fp {torch_dtype}") # load speech translation checkpoint asr_pipe = pipeline( # noqa: F821 "automatic-speech-recognition", model="openai/whisper-medium", device=device, torch_dtype=torch_dtype, ) # load text-to-speech checkpoint model = VitsModel.from_pretrained("facebook/mms-tts-zlm") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-zlm") def synthesise(text): inputs = tokenizer(text=text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs["waveform"] return speech def translate(audio): outputs = asr_pipe( audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "ms"}, ) return outputs["text"] def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech.T title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in **Malay**. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebooks's [MMS-TTS-ZLM](https://huggingface.co/facebook/mms-tts-zlm) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples="./examples", title=title, description=description, live=True, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()