File size: 5,178 Bytes
135fc6e
 
 
 
 
95da0b4
 
135fc6e
 
 
 
 
 
 
 
7794f9d
135fc6e
 
 
 
c98eb2a
 
7794f9d
 
c98eb2a
 
135fc6e
0618b9e
 
95da0b4
135fc6e
95da0b4
135fc6e
95da0b4
 
 
 
 
 
 
 
 
4c21da3
 
 
95da0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135fc6e
c98eb2a
 
 
4c21da3
135fc6e
59a4fa5
0618b9e
59a4fa5
 
 
135fc6e
 
 
 
 
59a4fa5
 
ee27f65
135fc6e
 
 
 
 
 
 
 
 
 
 
ee27f65
59a4fa5
135fc6e
 
 
0618b9e
7794f9d
135fc6e
 
 
 
 
 
 
 
 
 
 
7794f9d
 
 
 
 
 
 
59a4fa5
7794f9d
 
 
 
 
 
 
2a6844e
7794f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135fc6e
 
7794f9d
 
135fc6e
 
 
7794f9d
 
 
135fc6e
 
7794f9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image, ImageDraw, ImageFont


device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 3072


def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    # Append Moroccan and Amazigh art styles to the prompt
    style_prompt = f"{prompt}, inspired by Moroccan and Amazigh arts, traditional motifs, vibrant colors, and intricate patterns."

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=style_prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    # Ensure image is in uint8 format
    image = (255 * np.clip(image, 0, 1)).astype(np.uint8)

    # Convert the image to PIL format for overlaying the watermark
    pil_image = Image.fromarray(image)

    # Add watermark
    watermark_text = "Bibou.jpeg"
    font = ImageFont.truetype("arial.ttf", size=30)  # Adjust font and size as needed
    draw = ImageDraw.Draw(pil_image)
    text_width, text_height = draw.textsize(watermark_text, font=font)
    margin = 10
    opacity = 0.6
    draw.text((pil_image.width - text_width - margin, pil_image.height - text_height - margin), watermark_text, font=font, fill=(255, 255, 255, int(255 * opacity)))

    # Convert back to numpy array for Gradio display
    watermarked_image = np.array(pil_image)

    return watermarked_image





examples = [
    "Sunset over the Atlas Mountains",
    "Traditional Amazigh jewelry under the moonlight",
    "Flying carpet in space",
    "Unicorn riding a camel in the Sahara Desert",
    "Moroccan souk floating in the sky",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 840px;
    color: #003366;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # bibou.jpeg
        Generate Moroccan folkloric pictures, inspired by Moroccan and Amazigh arts. 🎨🎶
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()