Spaces:
Running
Running
File size: 5,178 Bytes
135fc6e 95da0b4 135fc6e 7794f9d 135fc6e c98eb2a 7794f9d c98eb2a 135fc6e 0618b9e 95da0b4 135fc6e 95da0b4 135fc6e 95da0b4 4c21da3 95da0b4 135fc6e c98eb2a 4c21da3 135fc6e 59a4fa5 0618b9e 59a4fa5 135fc6e 59a4fa5 ee27f65 135fc6e ee27f65 59a4fa5 135fc6e 0618b9e 7794f9d 135fc6e 7794f9d 59a4fa5 7794f9d 2a6844e 7794f9d 135fc6e 7794f9d 135fc6e 7794f9d 135fc6e 7794f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image, ImageDraw, ImageFont
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 3072
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# Append Moroccan and Amazigh art styles to the prompt
style_prompt = f"{prompt}, inspired by Moroccan and Amazigh arts, traditional motifs, vibrant colors, and intricate patterns."
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=style_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Ensure image is in uint8 format
image = (255 * np.clip(image, 0, 1)).astype(np.uint8)
# Convert the image to PIL format for overlaying the watermark
pil_image = Image.fromarray(image)
# Add watermark
watermark_text = "Bibou.jpeg"
font = ImageFont.truetype("arial.ttf", size=30) # Adjust font and size as needed
draw = ImageDraw.Draw(pil_image)
text_width, text_height = draw.textsize(watermark_text, font=font)
margin = 10
opacity = 0.6
draw.text((pil_image.width - text_width - margin, pil_image.height - text_height - margin), watermark_text, font=font, fill=(255, 255, 255, int(255 * opacity)))
# Convert back to numpy array for Gradio display
watermarked_image = np.array(pil_image)
return watermarked_image
examples = [
"Sunset over the Atlas Mountains",
"Traditional Amazigh jewelry under the moonlight",
"Flying carpet in space",
"Unicorn riding a camel in the Sahara Desert",
"Moroccan souk floating in the sky",
]
css="""
#col-container {
margin: 0 auto;
max-width: 840px;
color: #003366;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# bibou.jpeg
Generate Moroccan folkloric pictures, inspired by Moroccan and Amazigh arts. 🎨🎶
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch() |