halimbahae commited on
Commit
7794f9d
·
verified ·
1 Parent(s): 2a6844e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -43
app.py CHANGED
@@ -11,30 +11,28 @@ if torch.cuda.is_available():
11
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
  pipe.enable_xformers_memory_efficient_attention()
13
  pipe = pipe.to(device)
14
- else:
15
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
  pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 3000
 
 
20
 
21
- # Function to generate art with Moroccan and Amazigh styles
22
- def infer(prompt, seed, randomize_seed, width, height):
23
- # Add Moroccan and Amazigh art styles to the prompt
24
- style_prompt = f"{prompt}, inspired by Moroccan and Amazigh arts, traditional motifs, vibrant colors, and intricate patterns."
25
-
26
  if randomize_seed:
27
  seed = random.randint(0, MAX_SEED)
28
 
29
  generator = torch.Generator().manual_seed(seed)
30
 
31
  image = pipe(
32
- prompt=style_prompt,
33
- guidance_scale=7.5,
34
- num_inference_steps=50,
35
- width=width,
36
- height=height,
37
- generator=generator
 
38
  ).images[0]
39
 
40
  return image
@@ -53,9 +51,6 @@ css="""
53
  max-width: 840px;
54
  color: #003366;
55
  }
56
- body {
57
- background-color: white;
58
- }
59
  """
60
 
61
  if torch.cuda.is_available():
@@ -73,7 +68,7 @@ with gr.Blocks(css=css) as demo:
73
 
74
  with gr.Row():
75
 
76
- prompt = gr.Textbox(
77
  label="Prompt",
78
  show_label=False,
79
  max_lines=1,
@@ -85,38 +80,70 @@ with gr.Blocks(css=css) as demo:
85
 
86
  result = gr.Image(label="Result", show_label=False)
87
 
88
- with gr.Row():
89
- width = gr.Slider(
90
- label="Width",
91
- minimum=512,
92
- maximum=MAX_IMAGE_SIZE,
93
- step=32,
94
- value=512,
95
  )
96
-
97
- height = gr.Slider(
98
- label="Height",
99
- minimum=512,
100
- maximum=MAX_IMAGE_SIZE,
101
- step=32,
102
- value=512,
103
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  gr.Examples(
106
- examples=examples,
107
- inputs=[prompt]
108
  )
109
-
110
- gr.Markdown("""
111
- <div style="text-align: center;">
112
- Built with ❤️ by <a href="https://www.linkedin.com/in/halimbahae/" target="_blank">Bahae Eddine HALIM</a>
113
- </div>
114
- """)
115
 
116
  run_button.click(
117
- fn=infer,
118
- inputs=[prompt, 0, True, width, height],
119
- outputs=[result]
120
  )
121
 
122
- demo.queue().launch()
 
11
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
  pipe.enable_xformers_memory_efficient_attention()
13
  pipe = pipe.to(device)
14
+ else:
15
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
  pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
+ MAX_IMAGE_SIZE = 1024
20
+
21
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
 
26
  generator = torch.Generator().manual_seed(seed)
27
 
28
  image = pipe(
29
+ prompt = prompt,
30
+ negative_prompt = negative_prompt,
31
+ guidance_scale = guidance_scale,
32
+ num_inference_steps = num_inference_steps,
33
+ width = width,
34
+ height = height,
35
+ generator = generator
36
  ).images[0]
37
 
38
  return image
 
51
  max-width: 840px;
52
  color: #003366;
53
  }
 
 
 
54
  """
55
 
56
  if torch.cuda.is_available():
 
68
 
69
  with gr.Row():
70
 
71
+ prompt = gr.Text(
72
  label="Prompt",
73
  show_label=False,
74
  max_lines=1,
 
80
 
81
  result = gr.Image(label="Result", show_label=False)
82
 
83
+ with gr.Accordion("Advanced Settings", open=False):
84
+
85
+ negative_prompt = gr.Text(
86
+ label="Negative prompt",
87
+ max_lines=1,
88
+ placeholder="Enter a negative prompt",
89
+ visible=False,
90
  )
91
+
92
+ seed = gr.Slider(
93
+ label="Seed",
94
+ minimum=0,
95
+ maximum=MAX_SEED,
96
+ step=1,
97
+ value=0,
98
  )
99
+
100
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
+
102
+ with gr.Row():
103
+
104
+ width = gr.Slider(
105
+ label="Width",
106
+ minimum=256,
107
+ maximum=MAX_IMAGE_SIZE,
108
+ step=32,
109
+ value=1024,
110
+ )
111
+
112
+ height = gr.Slider(
113
+ label="Height",
114
+ minimum=256,
115
+ maximum=MAX_IMAGE_SIZE,
116
+ step=32,
117
+ value=1024,
118
+ )
119
+
120
+ with gr.Row():
121
+
122
+ guidance_scale = gr.Slider(
123
+ label="Guidance scale",
124
+ minimum=0.0,
125
+ maximum=10.0,
126
+ step=0.1,
127
+ value=0.0,
128
+ )
129
+
130
+ num_inference_steps = gr.Slider(
131
+ label="Number of inference steps",
132
+ minimum=1,
133
+ maximum=12,
134
+ step=1,
135
+ value=2,
136
+ )
137
 
138
  gr.Examples(
139
+ examples = examples,
140
+ inputs = [prompt]
141
  )
 
 
 
 
 
 
142
 
143
  run_button.click(
144
+ fn = infer,
145
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
146
+ outputs = [result]
147
  )
148
 
149
+ demo.queue().launch()