Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#4
by
John6666
- opened
app.py
CHANGED
@@ -1,300 +1,300 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
from gradio_litmodel3d import LitModel3D
|
4 |
-
import os
|
5 |
-
import shutil
|
6 |
-
import random
|
7 |
-
import uuid
|
8 |
-
from datetime import datetime
|
9 |
-
from diffusers import DiffusionPipeline
|
10 |
-
|
11 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
12 |
-
from typing import *
|
13 |
-
import torch
|
14 |
-
import numpy as np
|
15 |
-
import imageio
|
16 |
-
from easydict import EasyDict as edict
|
17 |
-
from PIL import Image
|
18 |
-
from trellis.pipelines import TrellisImageTo3DPipeline
|
19 |
-
from trellis.representations import Gaussian, MeshExtractResult
|
20 |
-
from trellis.utils import render_utils, postprocessing_utils
|
21 |
-
|
22 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
-
# Constants
|
24 |
-
MAX_SEED = np.iinfo(np.int32).max
|
25 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
26 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
27 |
-
|
28 |
-
# Create permanent storage directory for Flux generated images
|
29 |
-
SAVE_DIR = "saved_images"
|
30 |
-
if not os.path.exists(SAVE_DIR):
|
31 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
32 |
-
|
33 |
-
def start_session(req: gr.Request):
|
34 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
35 |
-
os.makedirs(user_dir, exist_ok=True)
|
36 |
-
|
37 |
-
def end_session(req: gr.Request):
|
38 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
39 |
-
shutil.rmtree(user_dir)
|
40 |
-
|
41 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
42 |
-
processed_image = trellis_pipeline.preprocess_image(image)
|
43 |
-
return processed_image
|
44 |
-
|
45 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
46 |
-
return {
|
47 |
-
'gaussian': {
|
48 |
-
**gs.init_params,
|
49 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
50 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
51 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
52 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
53 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
54 |
-
},
|
55 |
-
'mesh': {
|
56 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
57 |
-
'faces': mesh.faces.cpu().numpy(),
|
58 |
-
},
|
59 |
-
}
|
60 |
-
|
61 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
62 |
-
gs = Gaussian(
|
63 |
-
aabb=state['gaussian']['aabb'],
|
64 |
-
sh_degree=state['gaussian']['sh_degree'],
|
65 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
66 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
67 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
68 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
69 |
-
)
|
70 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
71 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
72 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
73 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
74 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
75 |
-
|
76 |
-
mesh = edict(
|
77 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
78 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
79 |
-
)
|
80 |
-
|
81 |
-
return gs, mesh
|
82 |
-
|
83 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
84 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
85 |
-
|
86 |
-
@spaces.GPU
|
87 |
-
def generate_flux_image(
|
88 |
-
prompt: str,
|
89 |
-
seed: int,
|
90 |
-
randomize_seed: bool,
|
91 |
-
width: int,
|
92 |
-
height: int,
|
93 |
-
guidance_scale: float,
|
94 |
-
num_inference_steps: int,
|
95 |
-
lora_scale: float,
|
96 |
-
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
97 |
-
) -> Image.Image:
|
98 |
-
"""Generate image using Flux pipeline"""
|
99 |
-
if randomize_seed:
|
100 |
-
seed = random.randint(0, MAX_SEED)
|
101 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
102 |
-
|
103 |
-
image = flux_pipeline(
|
104 |
-
prompt=prompt,
|
105 |
-
guidance_scale=guidance_scale,
|
106 |
-
num_inference_steps=num_inference_steps,
|
107 |
-
width=width,
|
108 |
-
height=height,
|
109 |
-
generator=generator,
|
110 |
-
joint_attention_kwargs={"scale": lora_scale},
|
111 |
-
).images[0]
|
112 |
-
|
113 |
-
# Save the generated image
|
114 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
115 |
-
unique_id = str(uuid.uuid4())[:8]
|
116 |
-
filename = f"{timestamp}_{unique_id}.png"
|
117 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
118 |
-
image.save(filepath)
|
119 |
-
|
120 |
-
return image
|
121 |
-
|
122 |
-
@spaces.GPU
|
123 |
-
def image_to_3d(
|
124 |
-
image: Image.Image,
|
125 |
-
seed: int,
|
126 |
-
ss_guidance_strength: float,
|
127 |
-
ss_sampling_steps: int,
|
128 |
-
slat_guidance_strength: float,
|
129 |
-
slat_sampling_steps: int,
|
130 |
-
req: gr.Request,
|
131 |
-
) -> Tuple[dict, str]:
|
132 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
133 |
-
outputs = trellis_pipeline.run(
|
134 |
-
image,
|
135 |
-
seed=seed,
|
136 |
-
formats=["gaussian", "mesh"],
|
137 |
-
preprocess_image=False,
|
138 |
-
sparse_structure_sampler_params={
|
139 |
-
"steps": ss_sampling_steps,
|
140 |
-
"cfg_strength": ss_guidance_strength,
|
141 |
-
},
|
142 |
-
slat_sampler_params={
|
143 |
-
"steps": slat_sampling_steps,
|
144 |
-
"cfg_strength": slat_guidance_strength,
|
145 |
-
},
|
146 |
-
)
|
147 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
148 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
149 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
150 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
151 |
-
imageio.mimsave(video_path, video, fps=15)
|
152 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
153 |
-
torch.cuda.empty_cache()
|
154 |
-
return state, video_path
|
155 |
-
|
156 |
-
@spaces.GPU(duration=90)
|
157 |
-
def extract_glb(
|
158 |
-
state: dict,
|
159 |
-
mesh_simplify: float,
|
160 |
-
texture_size: int,
|
161 |
-
req: gr.Request,
|
162 |
-
) -> Tuple[str, str]:
|
163 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
164 |
-
gs, mesh = unpack_state(state)
|
165 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
166 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
167 |
-
glb.export(glb_path)
|
168 |
-
torch.cuda.empty_cache()
|
169 |
-
return glb_path, glb_path
|
170 |
-
|
171 |
-
@spaces.GPU
|
172 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
173 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
174 |
-
gs, _ = unpack_state(state)
|
175 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
176 |
-
gs.save_ply(gaussian_path)
|
177 |
-
torch.cuda.empty_cache()
|
178 |
-
return gaussian_path, gaussian_path
|
179 |
-
|
180 |
-
# Gradio Interface
|
181 |
-
with gr.Blocks() as demo:
|
182 |
-
gr.Markdown("""
|
183 |
-
## Game Asset Generation to 3D with FLUX and TRELLIS
|
184 |
-
* Enter a prompt to generate a game asset image, then convert it to 3D
|
185 |
-
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
186 |
-
""")
|
187 |
-
|
188 |
-
with gr.Row():
|
189 |
-
with gr.Column():
|
190 |
-
# Flux image generation inputs
|
191 |
-
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
192 |
-
with gr.Accordion("Generation Settings", open=False):
|
193 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
194 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
195 |
-
with gr.Row():
|
196 |
-
width = gr.Slider(256, 1024, label="Width", value=768, step=32)
|
197 |
-
height = gr.Slider(256, 1024, label="Height", value=768, step=32)
|
198 |
-
with gr.Row():
|
199 |
-
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
200 |
-
num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
|
201 |
-
lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
|
202 |
-
|
203 |
-
with gr.Accordion("3D Generation Settings", open=False):
|
204 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
205 |
-
with gr.Row():
|
206 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
207 |
-
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
208 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
209 |
-
with gr.Row():
|
210 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
211 |
-
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
212 |
-
|
213 |
-
generate_btn = gr.Button("Generate")
|
214 |
-
|
215 |
-
with gr.Accordion("GLB Extraction Settings", open=False):
|
216 |
-
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
217 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
218 |
-
|
219 |
-
with gr.Row():
|
220 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
221 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
222 |
-
|
223 |
-
with gr.Column():
|
224 |
-
generated_image = gr.Image(label="Generated Asset", type="pil")
|
225 |
-
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
226 |
-
model_output = LitModel3D(label="Extracted GLB/Gaussian")
|
227 |
-
|
228 |
-
with gr.Row():
|
229 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
230 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
231 |
-
|
232 |
-
output_buf = gr.State()
|
233 |
-
|
234 |
-
# Event handlers
|
235 |
-
demo.load(start_session)
|
236 |
-
demo.unload(end_session)
|
237 |
-
|
238 |
-
generate_btn.click(
|
239 |
-
generate_flux_image,
|
240 |
-
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
|
241 |
-
outputs=[generated_image],
|
242 |
-
).then(
|
243 |
-
image_to_3d,
|
244 |
-
inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
245 |
-
outputs=[output_buf, video_output],
|
246 |
-
).then(
|
247 |
-
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
248 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
249 |
-
)
|
250 |
-
|
251 |
-
extract_glb_btn.click(
|
252 |
-
extract_glb,
|
253 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
254 |
-
outputs=[model_output, download_glb],
|
255 |
-
).then(
|
256 |
-
lambda: gr.Button(interactive=True),
|
257 |
-
outputs=[download_glb],
|
258 |
-
)
|
259 |
-
|
260 |
-
extract_gs_btn.click(
|
261 |
-
extract_gaussian,
|
262 |
-
inputs=[output_buf],
|
263 |
-
outputs=[model_output, download_gs],
|
264 |
-
).then(
|
265 |
-
lambda: gr.Button(interactive=True),
|
266 |
-
outputs=[download_gs],
|
267 |
-
)
|
268 |
-
|
269 |
-
model_output.clear(
|
270 |
-
lambda: gr.Button(interactive=False),
|
271 |
-
outputs=[download_glb],
|
272 |
-
)
|
273 |
-
|
274 |
-
# Initialize both pipelines
|
275 |
-
if __name__ == "__main__":
|
276 |
-
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig
|
277 |
-
from transformers import T5EncoderModel
|
278 |
-
|
279 |
-
# Initialize Flux pipeline
|
280 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
281 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
282 |
-
|
283 |
-
dtype = torch.bfloat16
|
284 |
-
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
285 |
-
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
286 |
-
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
287 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
288 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
289 |
-
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
290 |
-
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
|
291 |
-
|
292 |
-
# Initialize Trellis pipeline
|
293 |
-
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
294 |
-
trellis_pipeline.cuda()
|
295 |
-
try:
|
296 |
-
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
297 |
-
except:
|
298 |
-
pass
|
299 |
-
|
300 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from gradio_litmodel3d import LitModel3D
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import random
|
7 |
+
import uuid
|
8 |
+
from datetime import datetime
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
|
11 |
+
os.environ['SPCONV_ALGO'] = 'native'
|
12 |
+
from typing import *
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
+
import imageio
|
16 |
+
from easydict import EasyDict as edict
|
17 |
+
from PIL import Image
|
18 |
+
from trellis.pipelines import TrellisImageTo3DPipeline
|
19 |
+
from trellis.representations import Gaussian, MeshExtractResult
|
20 |
+
from trellis.utils import render_utils, postprocessing_utils
|
21 |
+
|
22 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
+
# Constants
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
26 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
27 |
+
|
28 |
+
# Create permanent storage directory for Flux generated images
|
29 |
+
SAVE_DIR = "saved_images"
|
30 |
+
if not os.path.exists(SAVE_DIR):
|
31 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
32 |
+
|
33 |
+
def start_session(req: gr.Request):
|
34 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
35 |
+
os.makedirs(user_dir, exist_ok=True)
|
36 |
+
|
37 |
+
def end_session(req: gr.Request):
|
38 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
39 |
+
shutil.rmtree(user_dir)
|
40 |
+
|
41 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
42 |
+
processed_image = trellis_pipeline.preprocess_image(image)
|
43 |
+
return processed_image
|
44 |
+
|
45 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
46 |
+
return {
|
47 |
+
'gaussian': {
|
48 |
+
**gs.init_params,
|
49 |
+
'_xyz': gs._xyz.cpu().numpy(),
|
50 |
+
'_features_dc': gs._features_dc.cpu().numpy(),
|
51 |
+
'_scaling': gs._scaling.cpu().numpy(),
|
52 |
+
'_rotation': gs._rotation.cpu().numpy(),
|
53 |
+
'_opacity': gs._opacity.cpu().numpy(),
|
54 |
+
},
|
55 |
+
'mesh': {
|
56 |
+
'vertices': mesh.vertices.cpu().numpy(),
|
57 |
+
'faces': mesh.faces.cpu().numpy(),
|
58 |
+
},
|
59 |
+
}
|
60 |
+
|
61 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
62 |
+
gs = Gaussian(
|
63 |
+
aabb=state['gaussian']['aabb'],
|
64 |
+
sh_degree=state['gaussian']['sh_degree'],
|
65 |
+
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
66 |
+
scaling_bias=state['gaussian']['scaling_bias'],
|
67 |
+
opacity_bias=state['gaussian']['opacity_bias'],
|
68 |
+
scaling_activation=state['gaussian']['scaling_activation'],
|
69 |
+
)
|
70 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
71 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
72 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
73 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
74 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
75 |
+
|
76 |
+
mesh = edict(
|
77 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
78 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
79 |
+
)
|
80 |
+
|
81 |
+
return gs, mesh
|
82 |
+
|
83 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
84 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
85 |
+
|
86 |
+
@spaces.GPU
|
87 |
+
def generate_flux_image(
|
88 |
+
prompt: str,
|
89 |
+
seed: int,
|
90 |
+
randomize_seed: bool,
|
91 |
+
width: int,
|
92 |
+
height: int,
|
93 |
+
guidance_scale: float,
|
94 |
+
num_inference_steps: int,
|
95 |
+
lora_scale: float,
|
96 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
97 |
+
) -> Image.Image:
|
98 |
+
"""Generate image using Flux pipeline"""
|
99 |
+
if randomize_seed:
|
100 |
+
seed = random.randint(0, MAX_SEED)
|
101 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
102 |
+
|
103 |
+
image = flux_pipeline(
|
104 |
+
prompt=prompt,
|
105 |
+
guidance_scale=guidance_scale,
|
106 |
+
num_inference_steps=num_inference_steps,
|
107 |
+
width=width,
|
108 |
+
height=height,
|
109 |
+
generator=generator,
|
110 |
+
joint_attention_kwargs={"scale": lora_scale},
|
111 |
+
).images[0]
|
112 |
+
|
113 |
+
# Save the generated image
|
114 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
115 |
+
unique_id = str(uuid.uuid4())[:8]
|
116 |
+
filename = f"{timestamp}_{unique_id}.png"
|
117 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
118 |
+
image.save(filepath)
|
119 |
+
|
120 |
+
return image
|
121 |
+
|
122 |
+
@spaces.GPU
|
123 |
+
def image_to_3d(
|
124 |
+
image: Image.Image,
|
125 |
+
seed: int,
|
126 |
+
ss_guidance_strength: float,
|
127 |
+
ss_sampling_steps: int,
|
128 |
+
slat_guidance_strength: float,
|
129 |
+
slat_sampling_steps: int,
|
130 |
+
req: gr.Request,
|
131 |
+
) -> Tuple[dict, str]:
|
132 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
133 |
+
outputs = trellis_pipeline.run(
|
134 |
+
image,
|
135 |
+
seed=seed,
|
136 |
+
formats=["gaussian", "mesh"],
|
137 |
+
preprocess_image=False,
|
138 |
+
sparse_structure_sampler_params={
|
139 |
+
"steps": ss_sampling_steps,
|
140 |
+
"cfg_strength": ss_guidance_strength,
|
141 |
+
},
|
142 |
+
slat_sampler_params={
|
143 |
+
"steps": slat_sampling_steps,
|
144 |
+
"cfg_strength": slat_guidance_strength,
|
145 |
+
},
|
146 |
+
)
|
147 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
148 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
149 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
150 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
151 |
+
imageio.mimsave(video_path, video, fps=15)
|
152 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
153 |
+
torch.cuda.empty_cache()
|
154 |
+
return state, video_path
|
155 |
+
|
156 |
+
@spaces.GPU(duration=90)
|
157 |
+
def extract_glb(
|
158 |
+
state: dict,
|
159 |
+
mesh_simplify: float,
|
160 |
+
texture_size: int,
|
161 |
+
req: gr.Request,
|
162 |
+
) -> Tuple[str, str]:
|
163 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
164 |
+
gs, mesh = unpack_state(state)
|
165 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
166 |
+
glb_path = os.path.join(user_dir, 'sample.glb')
|
167 |
+
glb.export(glb_path)
|
168 |
+
torch.cuda.empty_cache()
|
169 |
+
return glb_path, glb_path
|
170 |
+
|
171 |
+
@spaces.GPU
|
172 |
+
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
173 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
174 |
+
gs, _ = unpack_state(state)
|
175 |
+
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
176 |
+
gs.save_ply(gaussian_path)
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
return gaussian_path, gaussian_path
|
179 |
+
|
180 |
+
# Gradio Interface
|
181 |
+
with gr.Blocks() as demo:
|
182 |
+
gr.Markdown("""
|
183 |
+
## Game Asset Generation to 3D with FLUX and TRELLIS
|
184 |
+
* Enter a prompt to generate a game asset image, then convert it to 3D
|
185 |
+
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
186 |
+
""")
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column():
|
190 |
+
# Flux image generation inputs
|
191 |
+
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
192 |
+
with gr.Accordion("Generation Settings", open=False):
|
193 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
194 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
195 |
+
with gr.Row():
|
196 |
+
width = gr.Slider(256, 1024, label="Width", value=768, step=32)
|
197 |
+
height = gr.Slider(256, 1024, label="Height", value=768, step=32)
|
198 |
+
with gr.Row():
|
199 |
+
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
200 |
+
num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
|
201 |
+
lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
|
202 |
+
|
203 |
+
with gr.Accordion("3D Generation Settings", open=False):
|
204 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
205 |
+
with gr.Row():
|
206 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
207 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
208 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
209 |
+
with gr.Row():
|
210 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
211 |
+
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
212 |
+
|
213 |
+
generate_btn = gr.Button("Generate")
|
214 |
+
|
215 |
+
with gr.Accordion("GLB Extraction Settings", open=False):
|
216 |
+
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
217 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
221 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
222 |
+
|
223 |
+
with gr.Column():
|
224 |
+
generated_image = gr.Image(label="Generated Asset", type="pil")
|
225 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
226 |
+
model_output = LitModel3D(label="Extracted GLB/Gaussian")
|
227 |
+
|
228 |
+
with gr.Row():
|
229 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
230 |
+
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
231 |
+
|
232 |
+
output_buf = gr.State()
|
233 |
+
|
234 |
+
# Event handlers
|
235 |
+
demo.load(start_session)
|
236 |
+
demo.unload(end_session)
|
237 |
+
|
238 |
+
generate_btn.click(
|
239 |
+
generate_flux_image,
|
240 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
|
241 |
+
outputs=[generated_image],
|
242 |
+
).then(
|
243 |
+
image_to_3d,
|
244 |
+
inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
245 |
+
outputs=[output_buf, video_output],
|
246 |
+
).then(
|
247 |
+
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
248 |
+
outputs=[extract_glb_btn, extract_gs_btn],
|
249 |
+
)
|
250 |
+
|
251 |
+
extract_glb_btn.click(
|
252 |
+
extract_glb,
|
253 |
+
inputs=[output_buf, mesh_simplify, texture_size],
|
254 |
+
outputs=[model_output, download_glb],
|
255 |
+
).then(
|
256 |
+
lambda: gr.Button(interactive=True),
|
257 |
+
outputs=[download_glb],
|
258 |
+
)
|
259 |
+
|
260 |
+
extract_gs_btn.click(
|
261 |
+
extract_gaussian,
|
262 |
+
inputs=[output_buf],
|
263 |
+
outputs=[model_output, download_gs],
|
264 |
+
).then(
|
265 |
+
lambda: gr.Button(interactive=True),
|
266 |
+
outputs=[download_gs],
|
267 |
+
)
|
268 |
+
|
269 |
+
model_output.clear(
|
270 |
+
lambda: gr.Button(interactive=False),
|
271 |
+
outputs=[download_glb],
|
272 |
+
)
|
273 |
+
|
274 |
+
# Initialize both pipelines
|
275 |
+
if __name__ == "__main__":
|
276 |
+
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig
|
277 |
+
from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
|
278 |
+
|
279 |
+
# Initialize Flux pipeline
|
280 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
281 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
282 |
+
|
283 |
+
dtype = torch.bfloat16
|
284 |
+
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
285 |
+
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
286 |
+
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
287 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
288 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
289 |
+
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
290 |
+
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
|
291 |
+
|
292 |
+
# Initialize Trellis pipeline
|
293 |
+
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
294 |
+
trellis_pipeline.cuda()
|
295 |
+
try:
|
296 |
+
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
297 |
+
except:
|
298 |
+
pass
|
299 |
+
|
300 |
demo.launch()
|