SVFR-demo / src /utils /util.py
fffiloni's picture
Migrated from GitHub
bdd549c verified
raw
history blame
1.75 kB
import os
from pathlib import Path
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
import imageio
def seed_everything(seed):
import random
import numpy as np
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed % (2**32))
random.seed(seed)
def save_videos_from_pil(pil_images, path, fps=8):
save_fmt = Path(path).suffix
os.makedirs(os.path.dirname(path), exist_ok=True)
if save_fmt == ".mp4":
with imageio.get_writer(path, fps=fps) as writer:
for img in pil_images:
img_array = np.array(img) # Convert PIL Image to numpy array
writer.append_data(img_array)
elif save_fmt == ".gif":
pil_images[0].save(
fp=path,
format="GIF",
append_images=pil_images[1:],
save_all=True,
duration=(1 / fps * 1000),
loop=0,
optimize=False,
lossless=True
)
else:
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
height, width = videos.shape[-2:]
outputs = []
for i, x in enumerate(videos):
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
x = Image.fromarray(x)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
save_videos_from_pil(outputs, path, fps)