Spaces:
Running
on
L40S
Running
on
L40S
import os | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torchvision | |
from einops import rearrange | |
from PIL import Image | |
import imageio | |
def seed_everything(seed): | |
import random | |
import numpy as np | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed % (2**32)) | |
random.seed(seed) | |
def save_videos_from_pil(pil_images, path, fps=8): | |
save_fmt = Path(path).suffix | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
if save_fmt == ".mp4": | |
with imageio.get_writer(path, fps=fps) as writer: | |
for img in pil_images: | |
img_array = np.array(img) # Convert PIL Image to numpy array | |
writer.append_data(img_array) | |
elif save_fmt == ".gif": | |
pil_images[0].save( | |
fp=path, | |
format="GIF", | |
append_images=pil_images[1:], | |
save_all=True, | |
duration=(1 / fps * 1000), | |
loop=0, | |
optimize=False, | |
lossless=True | |
) | |
else: | |
raise ValueError("Unsupported file type. Use .mp4 or .gif.") | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
height, width = videos.shape[-2:] | |
outputs = [] | |
for i, x in enumerate(videos): | |
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
x = Image.fromarray(x) | |
outputs.append(x) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
save_videos_from_pil(outputs, path, fps) | |