SVFR-demo / src /pipelines /pipeline.py
fffiloni's picture
Migrated from GitHub
bdd549c verified
raw
history blame
36.5 kB
import inspect
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union
from einops import rearrange
import numpy as np
import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.image_processor import VaeImageProcessor
# from diffusers.models import UNetSpatioTemporalConditionModel
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers import (
AutoencoderKLTemporalDecoder,
EulerDiscreteScheduler,
)
# from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from src.models.svfr_adapter.unet_3d_svd_condition_ip import UNet3DConditionSVDModel
logger = logging.get_logger(__name__)
def _append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def tensor2vid(video: torch.Tensor, processor: VaeImageProcessor, output_type: str = "np"):
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
@dataclass
class LQ2VideoSVDPipelineOutput(BaseOutput):
r"""
Output class for zero-shot text-to-video pipeline.
Args:
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
frames: Union[List[PIL.Image.Image], np.ndarray]
latents: Union[torch.Tensor, np.ndarray]
class LQ2VideoLongSVDPipeline(DiffusionPipeline):
r"""
Pipeline to generate video from an input image using Stable Video Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
unet ([`UNetSpatioTemporalConditionModel`]):
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
scheduler ([`EulerDiscreteScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images.
"""
model_cpu_offload_seq = "image_encoder->unet->vae"
_callback_tensor_inputs = ["latents"]
def __init__(
self,
vae: AutoencoderKLTemporalDecoder,
image_encoder: CLIPVisionModelWithProjection,
unet: UNet3DConditionSVDModel,
scheduler: EulerDiscreteScheduler,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
# print("vae:", self.vae_scale_factor)
self.image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True)
def _clip_encode_image(self, image, num_frames, device, num_videos_per_prompt, do_classifier_free_guidance):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.image_processor.pil_to_numpy(image)
image = self.image_processor.numpy_to_pt(image)
image = image * 2.0 - 1.0
image = _resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
# Normalize the image with for CLIP input
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
image = image.to(device=device, dtype=dtype, non_blocking=True,).unsqueeze(0) # 3,224,224
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_image_embeddings = torch.zeros_like(image_embeddings)
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
# image_embeddings = torch.cat([image_embeddings, image_embeddings])
return image_embeddings
def _encode_vae_image(
self,
image: torch.Tensor,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
):
image = image.to(device=device)
image_latents = self.vae.encode(image).latent_dist.mode()
# image_latents = image_latents * 0.18215
image_latents = image_latents.unsqueeze(0)
if do_classifier_free_guidance:
negative_image_latents = torch.zeros_like(image_latents)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
# image_latents = torch.cat([negative_image_latents, image_latents])
image_latents = torch.cat([image_latents, image_latents])
# duplicate image_latents for each generation per prompt, using mps friendly method
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1)
return image_latents
def _get_add_time_ids(
self,
task_id_input,
dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
):
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(task_id_input)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
# add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
# add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
add_time_ids = task_id_input.to(dtype)
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
if do_classifier_free_guidance:
add_time_ids = torch.cat([add_time_ids, add_time_ids])
return add_time_ids
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
latents = latents.flatten(0, 1)
latents = 1 / self.vae.config.scaling_factor * latents
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
# decode decode_chunk_size frames at a time to avoid OOM
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
decode_kwargs = {}
if accepts_num_frames:
# we only pass num_frames_in if it's expected
decode_kwargs["num_frames"] = num_frames_in
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
frames.append(frame)
frames = torch.cat(frames, dim=0)
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
frames = frames.float()
return frames
def check_inputs(self, image, height, width):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
def prepare_latents(
self,
batch_size,
num_frames,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
ref_image_latents=None,
timestep=None
):
from src.utils.noise_util import random_noise
shape = (
batch_size,
num_frames,
num_channels_latents // 3,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
# noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# noise = video_fusion_noise(shape=shape, generator=generator, device=device, dtype=dtype)
# noise = video_fusion_noise_repeat(shape=shape, generator=generator, device=device, dtype=dtype)
noise = random_noise(shape=shape, generator=generator, device=device, dtype=dtype)
# noise = video_fusion_noise_repeat_0830(shape=shape, generator=generator, device=device, dtype=dtype)
else:
noise = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
if timestep is not None:
init_latents = ref_image_latents.unsqueeze(0)
# init_latents = ref_image_latents.unsqueeze(1)
latents = self.scheduler.add_noise(init_latents, noise, timestep)
else:
latents = noise * self.scheduler.init_noise_sigma
return latents
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
@property
def guidance_scale1(self):
return self._guidance_scale1
@property
def guidance_scale2(self):
return self._guidance_scale2
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
# @property
# def do_classifier_free_guidance(self):
# return True
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
def __call__(
self,
ref_image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], # lq
ref_concat_image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], # last concat ref img
id_prompts: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], # id encode_hidden_state
# task_id: int = 0,
task_id_input: torch.Tensor = None,
height: int = 512,
width: int = 512,
num_frames: Optional[int] = None,
num_inference_steps: int = 25,
min_guidance_scale=1.0, # 1.0,
max_guidance_scale=3.0,
noise_aug_strength: int = 0.02,
decode_chunk_size: Optional[int] = None,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
return_dict: bool = True,
do_classifier_free_guidance: bool = True,
overlap=7,
frames_per_batch=14,
i2i_noise_strength=1.0,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_frames (`int`, *optional*):
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
min_guidance_scale (`float`, *optional*, defaults to 1.0):
The minimum guidance scale. Used for the classifier free guidance with first frame.
max_guidance_scale (`float`, *optional*, defaults to 3.0):
The maximum guidance scale. Used for the classifier free guidance with last frame.
noise_aug_strength (`int`, *optional*, defaults to 0.02):
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
decode_chunk_size (`int`, *optional*):
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
Examples:
```py
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
image = image.resize((1024, 576))
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# print(min_guidance_scale, max_guidance_scale)
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
# 1. Check inputs. Raise error if not correct
self.check_inputs(ref_image, height, width)
# 2. Define call parameters
if isinstance(ref_image, PIL.Image.Image):
batch_size = 1
elif isinstance(ref_image, list):
batch_size = len(ref_image)
else:
if len(ref_image.shape)==4:
batch_size = 1
else:
batch_size = ref_image.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
# do_classifier_free_guidance = True #True
# 3. Prepare clip image embeds
# image_embeddings = torch.zeros([2,1,1024],dtype=self.vae.dtype).to(device)
# image_embeddings = self._clip_encode_image(
# clip_image,
# num_frames,
# device,
# num_videos_per_prompt,
# do_classifier_free_guidance,)
# print(image_embeddings)
image_embeddings = torch.cat([torch.zeros_like(id_prompts),id_prompts], dim=0) if do_classifier_free_guidance else id_prompts
# image_embeddings = torch.cat([torch.zeros_like(id_prompts),id_prompts,id_prompts], dim=0)
# image_embeddings = torch.cat([id_prompts,id_prompts,id_prompts], dim=0)
# image_embeddings = torch.cat([torch.zeros_like(id_prompts),torch.zeros_like(id_prompts),torch.zeros_like(id_prompts)], dim=0)
# image_embeddings = torch.cat([id_prompts_neg, id_prompts, id_prompts], dim=0)
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
# is why it is reduced here.
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
# fps = fps - 1
# 4. Encode input image using VAE
needs_upcasting = (self.vae.dtype == torch.float16 or self.vae.dtype == torch.bfloat16) and self.vae.config.force_upcast
vae_dtype = self.vae.dtype
if needs_upcasting:
self.vae.to(dtype=torch.float32)
# Prepare ref image latents
ref_image_tensor = ref_image.to(
dtype=self.vae.dtype, device=self.vae.device
)
# bsz = ref_image_tensor.shape[0]
# ref_image_tensor = rearrange(ref_image_tensor,'b f c h w-> (b f) c h w')
chunk_size = 20
ref_image_latents = []
for chunk_idx in range((ref_image_tensor.shape[0]//chunk_size)+1):
if chunk_idx*chunk_size>=num_frames: break
ref_image_latent = self.vae.encode(ref_image_tensor[chunk_idx*chunk_size:(chunk_idx+1)*chunk_size]).latent_dist.mean #TODO
ref_image_latents.append(ref_image_latent)
ref_image_latents = torch.cat(ref_image_latents,dim=0)
# print(ref_image_tensor.shape,ref_image_latents.shape)
ref_image_latents = ref_image_latents * 0.18215 # (f, 4, h, w)
# ref_image_latents = rearrange(ref_image_latents, '(b f) c h w-> b f c h w', b=bsz)
noise = randn_tensor(
ref_image_tensor.shape,
generator=generator,
device=self.vae.device,
dtype=self.vae.dtype)
ref_image_tensor = ref_image_tensor + noise_aug_strength * noise
image_latents = []
for chunk_idx in range((ref_image_tensor.shape[0]//chunk_size)+1):
if chunk_idx*chunk_size>=num_frames: break
image_latent = self._encode_vae_image(
ref_image_tensor[chunk_idx*chunk_size:(chunk_idx+1)*chunk_size],
device=device,
num_videos_per_prompt=num_videos_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
)
image_latents.append(image_latent)
image_latents = torch.cat(image_latents, dim=1)
# print(ref_image_tensor.shape,image_latents.shape)
# print(image_latents.shape)
image_latents = image_latents.to(image_embeddings.dtype)
ref_image_latents = ref_image_latents.to(image_embeddings.dtype)
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=vae_dtype)
# Repeat the image latents for each frame so we can concatenate them with the noise
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
# image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
if ref_concat_image is not None:
ref_concat_tensor = ref_concat_image.to(
dtype=self.vae.dtype, device=self.vae.device
)
ref_concat_tensor = self.vae.encode(ref_concat_tensor.unsqueeze(0)).latent_dist.mode()
ref_concat_tensor = ref_concat_tensor.unsqueeze(0).repeat(1,num_frames,1,1,1)
ref_concat_tensor = torch.cat([torch.zeros_like(ref_concat_tensor), ref_concat_tensor]) if do_classifier_free_guidance else ref_concat_tensor
ref_concat_tensor = ref_concat_tensor.to(image_embeddings)
else:
ref_concat_tensor = torch.zeros_like(image_latents)
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
task_id_input,
image_embeddings.dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
)
added_time_ids = added_time_ids.to(device, dtype=self.unet.dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, i2i_noise_strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_frames,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
ref_image_latents,
timestep=latent_timestep
)
# 7. Prepare guidance scale
guidance_scale = torch.linspace(
min_guidance_scale,
max_guidance_scale,
num_inference_steps)
guidance_scale1 = guidance_scale.to(device, latents.dtype)
guidance_scale2 = guidance_scale.to(device, latents.dtype)
self._guidance_scale1 = guidance_scale1
self._guidance_scale2 = guidance_scale2
# 8. Denoising loop
latents_all = latents # for any-frame generation
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
shift = 0
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# init
pred_latents = torch.zeros_like(
latents_all,
dtype=self.unet.dtype,
)
counter = torch.zeros(
(latents_all.shape[0], num_frames, 1, 1, 1),
dtype=self.unet.dtype,
).to(device=latents_all.device)
for batch, index_start in enumerate(range(0, num_frames, frames_per_batch - overlap*(i<3))):
self.scheduler._step_index = None
index_start -= shift
def indice_slice(tensor, idx_list):
tensor_list = []
for idx in idx_list:
idx = idx % tensor.shape[1]
tensor_list.append(tensor[:,idx])
return torch.stack(tensor_list, 1)
idx_list = list(range(index_start, index_start+frames_per_batch))
latents = indice_slice(latents_all, idx_list)
image_latents_input = indice_slice(image_latents, idx_list)
image_embeddings_input = indice_slice(image_embeddings, idx_list)
ref_concat_tensor_input = indice_slice(ref_concat_tensor, idx_list)
# if index_start + frames_per_batch >= num_frames:
# index_start = num_frames - frames_per_batch
# latents = latents_all[:, index_start:index_start + frames_per_batch]
# image_latents_input = image_latents[:, index_start:index_start + frames_per_batch]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# = torch.cat([torch.zeros_like(image_latents_input),image_latents_input]) if do_classifier_free_guidance else image_latents_input
# image_latents_input = torch.zeros_like(image_latents_input)
# image_latents_input = torch.cat([image_latents_input] * 2) if do_classifier_free_guidance else image_latents_input
# Concatenate image_latents over channels dimention
# print(latent_model_input.shape, image_latents_input.shape)
latent_model_input = torch.cat([
latent_model_input,
image_latents_input,
ref_concat_tensor_input], dim=2)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=image_embeddings_input.flatten(0,1),
added_time_ids=added_time_ids,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + self.guidance_scale1[i] * (noise_pred_cond - noise_pred_uncond) #+ self.guidance_scale2[i] * (noise_pred_cond - noise_pred_drop_id)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t.to(self.unet.dtype), latents).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
# if batch == 0:
for iii in range(frames_per_batch):
# pred_latents[:, index_start + iii:index_start + iii + 1] += latents[:, iii:iii+1] * min(iii + 1, frames_per_batch-iii)
# counter[:, index_start + iii:index_start + iii + 1] += min(iii + 1, frames_per_batch-iii)
p = (index_start + iii) % pred_latents.shape[1]
pred_latents[:, p] += latents[:, iii] * min(iii + 1, frames_per_batch-iii)
counter[:, p] += 1 * min(iii + 1, frames_per_batch-iii)
shift += overlap
shift = shift % frames_per_batch
pred_latents = pred_latents / counter
latents_all = pred_latents
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
latents = latents_all
if not output_type == "latent":
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=vae_dtype)
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
else:
frames = latents
self.maybe_free_model_hooks()
if not return_dict:
return frames
return LQ2VideoSVDPipelineOutput(frames=frames,latents=latents)
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out