Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: UTF-8 -*- | |
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
def xyxy2xywh(x): | |
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right | |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center | |
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center | |
y[:, 2] = x[:, 2] - x[:, 0] # width | |
y[:, 3] = x[:, 3] - x[:, 1] # height | |
return y | |
def xywh2xyxy(x): | |
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) | |
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x | |
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y | |
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x | |
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y | |
return y | |
def box_iou(box1, box2): | |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py | |
""" | |
Return intersection-over-union (Jaccard index) of boxes. | |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |
Arguments: | |
box1 (Tensor[N, 4]) | |
box2 (Tensor[M, 4]) | |
Returns: | |
iou (Tensor[N, M]): the NxM matrix containing the pairwise | |
IoU values for every element in boxes1 and boxes2 | |
""" | |
def box_area(box): | |
# box = 4xn | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
area1 = box_area(box1.T) | |
area2 = box_area(box2.T) | |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) | |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - | |
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |
# iou = inter / (area1 + area2 - inter) | |
return inter / (area1[:, None] + area2 - inter) | |
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): | |
# Rescale coords (xyxy) from img1_shape to img0_shape | |
if ratio_pad is None: # calculate from img0_shape | |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
else: | |
gain = ratio_pad[0][0] | |
pad = ratio_pad[1] | |
coords[:, [0, 2]] -= pad[0] # x padding | |
coords[:, [1, 3]] -= pad[1] # y padding | |
coords[:, :4] /= gain | |
clip_coords(coords, img0_shape) | |
return coords | |
def clip_coords(boxes, img_shape): | |
# Clip bounding xyxy bounding boxes to image shape (height, width) | |
boxes[:, 0].clamp_(0, img_shape[1]) # x1 | |
boxes[:, 1].clamp_(0, img_shape[0]) # y1 | |
boxes[:, 2].clamp_(0, img_shape[1]) # x2 | |
boxes[:, 3].clamp_(0, img_shape[0]) # y2 | |
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None): | |
# Rescale coords (xyxy) from img1_shape to img0_shape | |
if ratio_pad is None: # calculate from img0_shape | |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
else: | |
gain = ratio_pad[0][0] | |
pad = ratio_pad[1] | |
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding | |
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding | |
coords[:, :10] /= gain | |
#clip_coords(coords, img0_shape) | |
coords[:, 0].clamp_(0, img0_shape[1]) # x1 | |
coords[:, 1].clamp_(0, img0_shape[0]) # y1 | |
coords[:, 2].clamp_(0, img0_shape[1]) # x2 | |
coords[:, 3].clamp_(0, img0_shape[0]) # y2 | |
coords[:, 4].clamp_(0, img0_shape[1]) # x3 | |
coords[:, 5].clamp_(0, img0_shape[0]) # y3 | |
coords[:, 6].clamp_(0, img0_shape[1]) # x4 | |
coords[:, 7].clamp_(0, img0_shape[0]) # y4 | |
coords[:, 8].clamp_(0, img0_shape[1]) # x5 | |
coords[:, 9].clamp_(0, img0_shape[0]) # y5 | |
return coords | |
def show_results(img, xywh, conf, landmarks, class_num): | |
h,w,c = img.shape | |
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness | |
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w) | |
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h) | |
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w) | |
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h) | |
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA) | |
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)] | |
for i in range(5): | |
point_x = int(landmarks[2 * i] * w) | |
point_y = int(landmarks[2 * i + 1] * h) | |
cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1) | |
tf = max(tl - 1, 1) # font thickness | |
label = str(conf)[:5] | |
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) | |
return img | |
def make_divisible(x, divisor): | |
# Returns x evenly divisible by divisor | |
return (x // divisor) * divisor | |
def non_max_suppression_face(prediction, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, labels=()): | |
"""Performs Non-Maximum Suppression (NMS) on inference results | |
Returns: | |
detections with shape: nx6 (x1, y1, x2, y2, conf, cls) | |
""" | |
nc = prediction.shape[2] - 15 # number of classes | |
xc = prediction[..., 4] > conf_thres # candidates | |
# Settings | |
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |
# time_limit = 10.0 # seconds to quit after | |
redundant = True # require redundant detections | |
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) | |
merge = False # use merge-NMS | |
# t = time.time() | |
output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0] | |
for xi, x in enumerate(prediction): # image index, image inference | |
# Apply constraints | |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
x = x[xc[xi]] # confidence | |
# Cat apriori labels if autolabelling | |
if labels and len(labels[xi]): | |
l = labels[xi] | |
v = torch.zeros((len(l), nc + 15), device=x.device) | |
v[:, :4] = l[:, 1:5] # box | |
v[:, 4] = 1.0 # conf | |
v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls | |
x = torch.cat((x, v), 0) | |
# If none remain process next image | |
if not x.shape[0]: | |
continue | |
# Compute conf | |
x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf | |
# Box (center x, center y, width, height) to (x1, y1, x2, y2) | |
box = xywh2xyxy(x[:, :4]) | |
# Detections matrix nx6 (xyxy, conf, landmarks, cls) | |
if multi_label: | |
i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T | |
x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1) | |
else: # best class only | |
conf, j = x[:, 15:].max(1, keepdim=True) | |
x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres] | |
# Filter by class | |
if classes is not None: | |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
# If none remain process next image | |
n = x.shape[0] # number of boxes | |
if not n: | |
continue | |
# Batched NMS | |
c = x[:, 15:16] * (0 if agnostic else max_wh) # classes | |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS | |
#if i.shape[0] > max_det: # limit detections | |
# i = i[:max_det] | |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
weights = iou * scores[None] # box weights | |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
if redundant: | |
i = i[iou.sum(1) > 1] # require redundancy | |
output[xi] = x[i] | |
# if (time.time() - t) > time_limit: | |
# break # time limit exceeded | |
return output | |
class YoloFace(): | |
def __init__(self, pt_path='checkpoints/yolov5m-face.pt', confThreshold=0.5, nmsThreshold=0.45, device='cuda'): | |
assert os.path.exists(pt_path) | |
self.inpSize = 416 | |
self.conf_thres = confThreshold | |
self.iou_thres = nmsThreshold | |
self.test_device = torch.device(device if torch.cuda.is_available() else "cpu") | |
self.model = torch.jit.load(pt_path).to(self.test_device) | |
self.last_w = 416 | |
self.last_h = 416 | |
self.grids = None | |
def detect(self, srcimg): | |
# t0=time.time() | |
h0, w0 = srcimg.shape[:2] # orig hw | |
r = self.inpSize / min(h0, w0) # resize image to img_size | |
h1 = int(h0*r+31)//32*32 | |
w1 = int(w0*r+31)//32*32 | |
img = cv2.resize(srcimg, (w1,h1), interpolation=cv2.INTER_LINEAR) | |
# Convert | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR to RGB | |
# Run inference | |
img = torch.from_numpy(img).to(self.test_device).permute(2,0,1) | |
img = img.float()/255 # uint8 to fp16/32 0-1 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
if h1 != self.last_h or w1 != self.last_w or self.grids is None: | |
grids = [] | |
for scale in [8,16,32]: | |
ny = h1//scale | |
nx = w1//scale | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
grid = torch.stack((xv, yv), 2).view((1,1,ny, nx, 2)).float() | |
grids.append(grid.to(self.test_device)) | |
self.grids = grids | |
self.last_w = w1 | |
self.last_h = h1 | |
pred = self.model(img, self.grids).cpu() | |
# Apply NMS | |
det = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)[0] | |
# Process detections | |
# det = pred[0] | |
bboxes = np.zeros((det.shape[0], 4)) | |
kpss = np.zeros((det.shape[0], 5, 2)) | |
scores = np.zeros((det.shape[0])) | |
# gn = torch.tensor([w0, h0, w0, h0]).to(pred) # normalization gain whwh | |
# gn_lks = torch.tensor([w0, h0, w0, h0, w0, h0, w0, h0, w0, h0]).to(pred) # normalization gain landmarks | |
det = det.cpu().numpy() | |
for j in range(det.shape[0]): | |
# xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(4).cpu().numpy() | |
bboxes[j, 0] = det[j, 0] * w0/w1 | |
bboxes[j, 1] = det[j, 1] * h0/h1 | |
bboxes[j, 2] = det[j, 2] * w0/w1 - bboxes[j, 0] | |
bboxes[j, 3] = det[j, 3] * h0/h1 - bboxes[j, 1] | |
scores[j] = det[j, 4] | |
# landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(5,2).cpu().numpy() | |
kpss[j, :, :] = det[j, 5:15].reshape(5, 2) * np.array([[w0/w1,h0/h1]]) | |
# class_num = det[j, 15].cpu().numpy() | |
# orgimg = show_results(orgimg, xywh, conf, landmarks, class_num) | |
return bboxes, kpss, scores | |
if __name__ == '__main__': | |
import time | |
imgpath = 'test.png' | |
yoloface = YoloFace(pt_path='../checkpoints/yoloface_v5m.pt') | |
srcimg = cv2.imread(imgpath) | |
#warpup | |
bboxes, kpss, scores = yoloface.detect(srcimg) | |
bboxes, kpss, scores = yoloface.detect(srcimg) | |
bboxes, kpss, scores = yoloface.detect(srcimg) | |
t1 = time.time() | |
for _ in range(10): | |
bboxes, kpss, scores = yoloface.detect(srcimg) | |
t2 = time.time() | |
print('total time: {} ms'.format((t2 - t1) * 1000)) | |
for i in range(bboxes.shape[0]): | |
xmin, ymin, xamx, ymax = int(bboxes[i, 0]), int(bboxes[i, 1]), int(bboxes[i, 0] + bboxes[i, 2]), int(bboxes[i, 1] + bboxes[i, 3]) | |
cv2.rectangle(srcimg, (xmin, ymin), (xamx, ymax), (0, 0, 255), thickness=2) | |
for j in range(5): | |
cv2.circle(srcimg, (int(kpss[i, j, 0]), int(kpss[i, j, 1])), 1, (0, 255, 0), thickness=5) | |
cv2.imwrite('test_yoloface.jpg', srcimg) |