File size: 12,251 Bytes
bdd549c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e85a8
bdd549c
 
 
f4e85a8
bdd549c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e85a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdd549c
 
 
 
 
f4e85a8
bdd549c
f4e85a8
 
 
bdd549c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e85a8
bdd549c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e85a8
 
 
 
 
bdd549c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import argparse
import warnings
import os
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
import random

from omegaconf import OmegaConf
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPVisionModelWithProjection
import torchvision.transforms as transforms
import torch.nn.functional as F
from src.models.svfr_adapter.unet_3d_svd_condition_ip import UNet3DConditionSVDModel

# pipeline 
from src.pipelines.pipeline import LQ2VideoLongSVDPipeline

from src.utils.util import (
    save_videos_grid,
    seed_everything,
)
from torchvision.utils import save_image

from src.models.id_proj import IDProjConvModel
from src.models import model_insightface_360k

from src.dataset.face_align.align import AlignImage

warnings.filterwarnings("ignore")

import decord
import cv2
from src.dataset.dataset import get_affine_transform, mean_face_lm5p_256, get_union_bbox, process_bbox, crop_resize_img

BASE_DIR = '.'


def main(config,args):
    if 'CUDA_VISIBLE_DEVICES' in os.environ:
        cuda_visible_devices = os.environ['CUDA_VISIBLE_DEVICES']
        print(f"CUDA_VISIBLE_DEVICES is set to: {cuda_visible_devices}")
    else:
        print("CUDA_VISIBLE_DEVICES is not set.")

    save_dir = f"{BASE_DIR}/{args.output_dir}"
    os.makedirs(save_dir,exist_ok=True)

    vae = AutoencoderKLTemporalDecoder.from_pretrained(
        f"{BASE_DIR}/{config.pretrained_model_name_or_path}", 
        subfolder="vae",
        variant="fp16")
    
    val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
        f"{BASE_DIR}/{config.pretrained_model_name_or_path}", 
        subfolder="scheduler")
    
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        f"{BASE_DIR}/{config.pretrained_model_name_or_path}", 
        subfolder="image_encoder",
        variant="fp16")
    unet = UNet3DConditionSVDModel.from_pretrained(
        f"{BASE_DIR}/{config.pretrained_model_name_or_path}", 
        subfolder="unet",
        variant="fp16")
    
    weight_dir = 'models/face_align'
    det_path = os.path.join(BASE_DIR, weight_dir, 'yoloface_v5m.pt')
    align_instance = AlignImage("cuda", det_path=det_path)

    to_tensor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

    import torch.nn as nn
    class InflatedConv3d(nn.Conv2d):
        def forward(self, x):
            x = super().forward(x)
            return x
    # Add ref channel
    old_weights = unet.conv_in.weight
    old_bias = unet.conv_in.bias
    new_conv1 = InflatedConv3d(
        12,
        old_weights.shape[0],
        kernel_size=unet.conv_in.kernel_size,
        stride=unet.conv_in.stride,
        padding=unet.conv_in.padding,
        bias=True if old_bias is not None else False,
    )
    param = torch.zeros((320, 4, 3, 3), requires_grad=True)
    new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights, param), dim=1))
    if old_bias is not None:
        new_conv1.bias = old_bias
    unet.conv_in = new_conv1
    unet.config["in_channels"] = 12
    unet.config.in_channels = 12
    

    id_linear = IDProjConvModel(in_channels=512, out_channels=1024).to(device='cuda')

    # load pretrained weights
    unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
    unet.load_state_dict(
        torch.load(unet_checkpoint_path, map_location="cpu"),
        strict=True,
    )
    
    id_linear_checkpoint_path = os.path.join(BASE_DIR, config.id_linear_checkpoint_path)
    id_linear.load_state_dict(
        torch.load(id_linear_checkpoint_path, map_location="cpu"),
        strict=True,
    )

    net_arcface = model_insightface_360k.getarcface(f'{BASE_DIR}/{config.net_arcface_checkpoint_path}').eval().to(device="cuda")    

    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    elif config.weight_dtype == "fp32":
        weight_dtype = torch.float32
    elif config.weight_dtype == "bf16":
        weight_dtype = torch.bfloat16
    else:
        raise ValueError(
            f"Do not support weight dtype: {config.weight_dtype} during training"
        )

    image_encoder.to(weight_dtype)
    vae.to(weight_dtype)
    unet.to(weight_dtype)
    id_linear.to(weight_dtype)
    net_arcface.requires_grad_(False).to(weight_dtype) 

    pipe = LQ2VideoLongSVDPipeline(
        unet=unet,
        image_encoder=image_encoder,
        vae=vae,
        scheduler=val_noise_scheduler,
        feature_extractor=None

    )
    pipe = pipe.to("cuda", dtype=unet.dtype)

    seed_input = args.seed
    seed_everything(seed_input)

    video_path = args.input_path
    task_ids = args.task_ids
    
    if 2 in task_ids and args.mask_path is not None: 
        mask_path = args.mask_path
        mask = Image.open(mask_path).convert("L")
        mask_array = np.array(mask)

        white_positions = mask_array == 255

    print('task_ids:',task_ids)
    task_prompt = [0,0,0]
    for i in range(3):
        if i in task_ids:
            task_prompt[i] = 1
    print("task_prompt:",task_prompt)
    
    video_name = video_path.split('/')[-1]
    # print(video_name)

    if os.path.exists(os.path.join(save_dir, "result_frames", video_name[:-4])):
        print(os.path.join(save_dir, "result_frames", video_name[:-4]))
        # continue

    cap = decord.VideoReader(video_path, fault_tol=1)
    total_frames = len(cap)
    T = total_frames #
    print("total_frames:",total_frames)
    step=1
    drive_idx_start = 0
    drive_idx_list = list(range(drive_idx_start, drive_idx_start + T * step, step))
    assert len(drive_idx_list) == T

    # Crop faces from the video for further processing
    bbox_list = []
    frame_interval = 5
    for frame_count, drive_idx in enumerate(drive_idx_list):
        if frame_count % frame_interval != 0:
            continue  
        frame = cap[drive_idx].asnumpy()
        _, _, bboxes_list = align_instance(frame[:,:,[2,1,0]], maxface=True)
        if bboxes_list==[]:
            continue
        x1, y1, ww, hh = bboxes_list[0]
        x2, y2 = x1 + ww, y1 + hh
        bbox = [x1, y1, x2, y2]
        bbox_list.append(bbox)
    bbox = get_union_bbox(bbox_list)
    bbox_s = process_bbox(bbox, expand_radio=0.4, height=frame.shape[0], width=frame.shape[1])

    imSameIDs = []
    vid_gt = []
    for i, drive_idx in enumerate(drive_idx_list):
        frame = cap[drive_idx].asnumpy()
        imSameID = Image.fromarray(frame)
        imSameID = crop_resize_img(imSameID, bbox_s)
        imSameID = imSameID.resize((512,512))
        if 1 in task_ids:
            imSameID = imSameID.convert("L")  # Convert to grayscale
            imSameID = imSameID.convert("RGB")
        image_array = np.array(imSameID)
        if 2 in task_ids and args.mask_path is not None:
            image_array[white_positions] = [255, 255, 255] # mask for inpainting task
        vid_gt.append(np.float32(image_array/255.))
        imSameIDs.append(imSameID)

    vid_lq = [(torch.from_numpy(frame).permute(2,0,1) - 0.5) / 0.5 for frame in vid_gt]

    val_data = dict(
        pixel_values_vid_lq = torch.stack(vid_lq,dim=0),
        # pixel_values_ref_img=self.to_tensor(target_image),
        # pixel_values_ref_concat_img=self.to_tensor(imSrc2),
        task_ids=task_ids,
        task_id_input=torch.tensor(task_prompt),
        total_frames=total_frames,
    )
    
    window_overlap=0
    inter_frame_list = get_overlap_slide_window_indices(val_data["total_frames"],config.data.n_sample_frames,window_overlap)
    
    lq_frames = val_data["pixel_values_vid_lq"]
    task_ids = val_data["task_ids"]
    task_id_input = val_data["task_id_input"]
    height, width = val_data["pixel_values_vid_lq"].shape[-2:]
    
    print("Generating the first clip...")
    output = pipe(
        lq_frames[inter_frame_list[0]].to("cuda").to(weight_dtype), # lq
        None, # ref concat
        torch.zeros((1, len(inter_frame_list[0]), 49, 1024)).to("cuda").to(weight_dtype),# encoder_hidden_states
        task_id_input.to("cuda").to(weight_dtype),
        height=height,
        width=width,
        num_frames=len(inter_frame_list[0]),
        decode_chunk_size=config.decode_chunk_size,
        noise_aug_strength=config.noise_aug_strength,
        min_guidance_scale=config.min_appearance_guidance_scale, 
        max_guidance_scale=config.max_appearance_guidance_scale,
        overlap=config.overlap,
        frames_per_batch=len(inter_frame_list[0]),
        num_inference_steps=50,
        i2i_noise_strength=config.i2i_noise_strength,
    )
    video = output.frames
 
    ref_img_tensor = video[0][:,-1]
    ref_img = (video[0][:,-1] *0.5+0.5).clamp(0,1) * 255.
    ref_img = ref_img.permute(1,2,0).cpu().numpy().astype(np.uint8)

    pts5 = align_instance(ref_img[:,:,[2,1,0]], maxface=True)[0][0]

    warp_mat = get_affine_transform(pts5, mean_face_lm5p_256 * height/256)
    ref_img = cv2.warpAffine(np.array(Image.fromarray(ref_img)), warp_mat, (height, width), flags=cv2.INTER_CUBIC)
    ref_img = to_tensor(ref_img).to("cuda").to(weight_dtype)
    
    # save_image(ref_img*0.5 + 0.5,f"{save_dir}/ref_img_align.png")
    
    ref_img =  F.interpolate(ref_img.unsqueeze(0)[:, :, 0:224, 16:240], size=[112, 112], mode='bilinear')
    _, id_feature_conv = net_arcface(ref_img) 
    id_embedding = id_linear(id_feature_conv) 
    
    print('Generating all video clips...')
    video = pipe(
        lq_frames.to("cuda").to(weight_dtype), # lq
        ref_img_tensor.to("cuda").to(weight_dtype),
        id_embedding.unsqueeze(1).repeat(1, len(lq_frames), 1, 1).to("cuda").to(weight_dtype), # encoder_hidden_states
        task_id_input.to("cuda").to(weight_dtype),
        height=height,
        width=width,
        num_frames=val_data["total_frames"],#frame_num,
        decode_chunk_size=config.decode_chunk_size,
        noise_aug_strength=config.noise_aug_strength,
        min_guidance_scale=config.min_appearance_guidance_scale,
        max_guidance_scale=config.max_appearance_guidance_scale,
        overlap=config.overlap,
        frames_per_batch=config.data.n_sample_frames,
        num_inference_steps=config.num_inference_steps,
        i2i_noise_strength=config.i2i_noise_strength,
    ).frames


    video = (video*0.5 + 0.5).clamp(0, 1)
    video = torch.cat([video.to(device="cuda")], dim=0).cpu()
    save_videos_grid(video, f"{save_dir}/{video_name[:-4]}_{seed_input}_gen.mp4", n_rows=1, fps=25)

    lq_frames = lq_frames.permute(1,0,2,3).unsqueeze(0)
    lq_frames = (lq_frames * 0.5 + 0.5).clamp(0, 1).to(device="cuda").cpu()
    save_videos_grid(lq_frames, f"{save_dir}/{video_name[:-4]}_{seed_input}_ori.mp4", n_rows=1, fps=25)
    
    if args.restore_frames:
        video = video.squeeze(0)
        os.makedirs(os.path.join(save_dir, "result_frames", f"{video_name[:-4]}_{seed_input}"),exist_ok=True)
        print(os.path.join(save_dir, "result_frames", video_name[:-4]))
        for i in range(video.shape[1]):
            save_frames_path = os.path.join(f"{save_dir}/result_frames", f"{video_name[:-4]}_{seed_input}", f'{i:08d}.png')
            save_image(video[:,i], save_frames_path)


def get_overlap_slide_window_indices(video_length, window_size, window_overlap):
    inter_frame_list = []
    for j in range(0, video_length, window_size-window_overlap):
        inter_frame_list.append( [e % video_length for e in range(j, min(j + window_size, video_length))] )

    return inter_frame_list

if __name__ == "__main__":
    def parse_list(value):
        return [int(x) for x in value.split(",")]
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/infer.yaml")
    parser.add_argument("--output_dir", type=str, default="output")
    parser.add_argument("--seed", type=int, default=77)
    parser.add_argument("--task_ids", type=parse_list, default=[0])
    parser.add_argument("--input_path", type=str, default='./assert/lq/lq3.mp4')
    parser.add_argument("--mask_path", type=str, default=None)
    parser.add_argument("--restore_frames", action='store_true')

    args = parser.parse_args()
    config = OmegaConf.load(args.config)
    main(config, args)