Spaces:
Running
on
L40S
Running
on
L40S
File size: 18,270 Bytes
25d1b89 38f6355 25d1b89 38f6355 fd5d3bc 25d1b89 7d22c8d 38f6355 fd5d3bc 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 fd5d3bc 25d1b89 38f6355 fd5d3bc b5244e1 fd5d3bc 25d1b89 38f6355 7379673 7d22c8d 7379673 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 25d1b89 38f6355 bbb3715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
"""
This script is based on the original project by https://huggingface.co/fffiloni.
URL: https://huggingface.co/spaces/fffiloni/SVFR-demo/blob/main/app.py
Modifications made:
- Synced the infer code updates from GitHub repo.
- Added an inpainting option to enhance functionality.
Author of modifications: https://github.com/wangzhiyaoo
Date: 2025/01/15
"""
import torch
import sys
import os
import subprocess
import shutil
import tempfile
import uuid
import gradio as gr
from glob import glob
from huggingface_hub import snapshot_download
import random
import argparse
import warnings
import os
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
import random
from omegaconf import OmegaConf
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPVisionModelWithProjection
import torchvision.transforms as transforms
import torch.nn.functional as F
from src.models.svfr_adapter.unet_3d_svd_condition_ip import UNet3DConditionSVDModel
# pipeline
from src.pipelines.pipeline import LQ2VideoLongSVDPipeline
from src.utils.util import (
save_videos_grid,
seed_everything,
)
from torchvision.utils import save_image
from src.models.id_proj import IDProjConvModel
from src.models import model_insightface_360k
from src.dataset.face_align.align import AlignImage
warnings.filterwarnings("ignore")
import decord
import cv2
from src.dataset.dataset import get_affine_transform, mean_face_lm5p_256, get_union_bbox, process_bbox, crop_resize_img
# Download models
os.makedirs("models", exist_ok=True)
snapshot_download(
repo_id = "fffiloni/SVFR",
local_dir = "./models"
)
# List of subdirectories to create inside "checkpoints"
subfolders = [
"stable-video-diffusion-img2vid-xt"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("models", subfolder), exist_ok=True)
snapshot_download(
repo_id = "stabilityai/stable-video-diffusion-img2vid-xt",
local_dir = "./models/stable-video-diffusion-img2vid-xt"
)
is_shared_ui = True if "fffiloni/SVFR-demo" in os.environ['SPACE_ID'] else False
from moviepy.editor import VideoFileClip
def process_video(input_path):
# Create a temporary folder
temp_folder = "temp_video_output"
os.makedirs(temp_folder, exist_ok=True)
# Get file extension
file_extension = os.path.splitext(input_path)[1].lower()
# Convert to MP4 if not already MP4
if file_extension != ".mp4":
mp4_path = os.path.join(temp_folder, "converted.mp4")
clip = VideoFileClip(input_path)
clip.write_videofile(mp4_path, codec="libx264")
clip.close()
else:
mp4_path = input_path # Already MP4
# Load video and trim to 4 seconds if necessary
output_path = os.path.join(temp_folder, "trimmed.mp4")
with VideoFileClip(mp4_path) as clip:
if clip.duration > 4:
trimmed_clip = clip.subclip(0, 4) # Trim to 4 seconds
trimmed_clip.write_videofile(output_path, codec="libx264")
trimmed_clip.close()
else:
# If no trimming is needed, copy the file to output_path
if mp4_path != output_path:
shutil.copy(mp4_path, output_path)
# Return the output path
return output_path, temp_folder
BASE_DIR = '.'
config = OmegaConf.load("./config/infer.yaml")
vae = AutoencoderKLTemporalDecoder.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="vae",
variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="image_encoder",
variant="fp16")
unet = UNet3DConditionSVDModel.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="unet",
variant="fp16")
weight_dir = 'models/face_align'
det_path = os.path.join(BASE_DIR, weight_dir, 'yoloface_v5m.pt')
align_instance = AlignImage("cuda", det_path=det_path)
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
import torch.nn as nn
class InflatedConv3d(nn.Conv2d):
def forward(self, x):
x = super().forward(x)
return x
# Add ref channel
old_weights = unet.conv_in.weight
old_bias = unet.conv_in.bias
new_conv1 = InflatedConv3d(
12,
old_weights.shape[0],
kernel_size=unet.conv_in.kernel_size,
stride=unet.conv_in.stride,
padding=unet.conv_in.padding,
bias=True if old_bias is not None else False,
)
param = torch.zeros((320, 4, 3, 3), requires_grad=True)
new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights, param), dim=1))
if old_bias is not None:
new_conv1.bias = old_bias
unet.conv_in = new_conv1
unet.config["in_channels"] = 12
unet.config.in_channels = 12
id_linear = IDProjConvModel(in_channels=512, out_channels=1024).to(device='cuda')
# load pretrained weights
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
unet.load_state_dict(
torch.load(unet_checkpoint_path, map_location="cpu"),
strict=True,
)
id_linear_checkpoint_path = os.path.join(BASE_DIR, config.id_linear_checkpoint_path)
id_linear.load_state_dict(
torch.load(id_linear_checkpoint_path, map_location="cpu"),
strict=True,
)
net_arcface = model_insightface_360k.getarcface(f'{BASE_DIR}/{config.net_arcface_checkpoint_path}').eval().to(device="cuda")
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(
f"Do not support weight dtype: {config.weight_dtype} during training"
)
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
id_linear.to(weight_dtype)
net_arcface.requires_grad_(False).to(weight_dtype)
pipe = LQ2VideoLongSVDPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
feature_extractor=None
)
pipe = pipe.to("cuda", dtype=unet.dtype)
def gen(args,pipe):
save_dir = f"{BASE_DIR}/{args.output_dir}"
os.makedirs(save_dir,exist_ok=True)
seed_input = args.seed
seed_everything(seed_input)
video_path = args.input_path
task_ids = args.task_ids
if 2 in task_ids and args.mask_path is not None:
mask_path = args.mask_path
mask = Image.open(mask_path).convert("L")
mask_array = np.array(mask)
white_positions = mask_array == 255
print('task_ids:',task_ids)
task_prompt = [0,0,0]
for i in range(3):
if i in task_ids:
task_prompt[i] = 1
print("task_prompt:",task_prompt)
video_name = video_path.split('/')[-1]
# print(video_name)
if os.path.exists(os.path.join(save_dir, "result_frames", video_name[:-4])):
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
# continue
cap = decord.VideoReader(video_path, fault_tol=1)
total_frames = len(cap)
T = total_frames #
print("total_frames:",total_frames)
step=1
drive_idx_start = 0
drive_idx_list = list(range(drive_idx_start, drive_idx_start + T * step, step))
assert len(drive_idx_list) == T
# Crop faces from the video for further processing
bbox_list = []
frame_interval = 5
for frame_count, drive_idx in enumerate(drive_idx_list):
if frame_count % frame_interval != 0:
continue
frame = cap[drive_idx].asnumpy()
_, _, bboxes_list = align_instance(frame[:,:,[2,1,0]], maxface=True)
if bboxes_list==[]:
continue
x1, y1, ww, hh = bboxes_list[0]
x2, y2 = x1 + ww, y1 + hh
bbox = [x1, y1, x2, y2]
bbox_list.append(bbox)
bbox = get_union_bbox(bbox_list)
bbox_s = process_bbox(bbox, expand_radio=0.4, height=frame.shape[0], width=frame.shape[1])
imSameIDs = []
vid_gt = []
for i, drive_idx in enumerate(drive_idx_list):
frame = cap[drive_idx].asnumpy()
imSameID = Image.fromarray(frame)
imSameID = crop_resize_img(imSameID, bbox_s)
imSameID = imSameID.resize((512,512))
if 1 in task_ids:
imSameID = imSameID.convert("L") # Convert to grayscale
imSameID = imSameID.convert("RGB")
image_array = np.array(imSameID)
if 2 in task_ids and args.mask_path is not None:
image_array[white_positions] = [255, 255, 255] # mask for inpainting task
vid_gt.append(np.float32(image_array/255.))
imSameIDs.append(imSameID)
vid_lq = [(torch.from_numpy(frame).permute(2,0,1) - 0.5) / 0.5 for frame in vid_gt]
val_data = dict(
pixel_values_vid_lq = torch.stack(vid_lq,dim=0),
# pixel_values_ref_img=self.to_tensor(target_image),
# pixel_values_ref_concat_img=self.to_tensor(imSrc2),
task_ids=task_ids,
task_id_input=torch.tensor(task_prompt),
total_frames=total_frames,
)
window_overlap=0
inter_frame_list = get_overlap_slide_window_indices(val_data["total_frames"],config.data.n_sample_frames,window_overlap)
lq_frames = val_data["pixel_values_vid_lq"]
task_ids = val_data["task_ids"]
task_id_input = val_data["task_id_input"]
height, width = val_data["pixel_values_vid_lq"].shape[-2:]
print("Generating the first clip...")
output = pipe(
lq_frames[inter_frame_list[0]].to("cuda").to(weight_dtype), # lq
None, # ref concat
torch.zeros((1, len(inter_frame_list[0]), 49, 1024)).to("cuda").to(weight_dtype),# encoder_hidden_states
task_id_input.to("cuda").to(weight_dtype),
height=height,
width=width,
num_frames=len(inter_frame_list[0]),
decode_chunk_size=config.decode_chunk_size,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale=config.min_appearance_guidance_scale,
max_guidance_scale=config.max_appearance_guidance_scale,
overlap=config.overlap,
frames_per_batch=len(inter_frame_list[0]),
num_inference_steps=50,
i2i_noise_strength=config.i2i_noise_strength,
)
video = output.frames
ref_img_tensor = video[0][:,-1]
ref_img = (video[0][:,-1] *0.5+0.5).clamp(0,1) * 255.
ref_img = ref_img.permute(1,2,0).cpu().numpy().astype(np.uint8)
pts5 = align_instance(ref_img[:,:,[2,1,0]], maxface=True)[0][0]
warp_mat = get_affine_transform(pts5, mean_face_lm5p_256 * height/256)
ref_img = cv2.warpAffine(np.array(Image.fromarray(ref_img)), warp_mat, (height, width), flags=cv2.INTER_CUBIC)
ref_img = to_tensor(ref_img).to("cuda").to(weight_dtype)
save_image(ref_img*0.5 + 0.5,f"{save_dir}/ref_img_align.png")
ref_img = F.interpolate(ref_img.unsqueeze(0)[:, :, 0:224, 16:240], size=[112, 112], mode='bilinear')
_, id_feature_conv = net_arcface(ref_img)
id_embedding = id_linear(id_feature_conv)
print('Generating all video clips...')
video = pipe(
lq_frames.to("cuda").to(weight_dtype), # lq
ref_img_tensor.to("cuda").to(weight_dtype),
id_embedding.unsqueeze(1).repeat(1, len(lq_frames), 1, 1).to("cuda").to(weight_dtype), # encoder_hidden_states
task_id_input.to("cuda").to(weight_dtype),
height=height,
width=width,
num_frames=val_data["total_frames"],#frame_num,
decode_chunk_size=config.decode_chunk_size,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale=config.min_appearance_guidance_scale,
max_guidance_scale=config.max_appearance_guidance_scale,
overlap=config.overlap,
frames_per_batch=config.data.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength,
).frames
video = (video*0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(device="cuda")], dim=0).cpu()
save_videos_grid(video, f"{save_dir}/{video_name[:-4]}_{seed_input}_gen.mp4", n_rows=1, fps=25)
lq_frames = lq_frames.permute(1,0,2,3).unsqueeze(0)
lq_frames = (lq_frames * 0.5 + 0.5).clamp(0, 1).to(device="cuda").cpu()
save_videos_grid(lq_frames, f"{save_dir}/{video_name[:-4]}_{seed_input}_ori.mp4", n_rows=1, fps=25)
if args.restore_frames:
video = video.squeeze(0)
os.makedirs(os.path.join(save_dir, "result_frames", f"{video_name[:-4]}_{seed_input}"),exist_ok=True)
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
for i in range(video.shape[1]):
save_frames_path = os.path.join(f"{save_dir}/result_frames", f"{video_name[:-4]}_{seed_input}", f'{i:08d}.png')
save_image(video[:,i], save_frames_path)
def get_overlap_slide_window_indices(video_length, window_size, window_overlap):
inter_frame_list = []
for j in range(0, video_length, window_size-window_overlap):
inter_frame_list.append( [e % video_length for e in range(j, min(j + window_size, video_length))] )
return inter_frame_list
def random_seed():
return random.randint(0, 10000)
def infer(lq_sequence, task_name, mask, seed, progress=gr.Progress(track_tqdm=True)):
if is_shared_ui:
lq_sequence, temp_input_folder = process_video(lq_sequence)
unique_id = str(uuid.uuid4())
output_dir = f"results_{unique_id}"
task_mapping = {
"BFR": 0,
"Colorization": 1,
"Inpainting": 2
}
task_ids = [task_mapping[task] for task in task_name if task in task_mapping]
# task_id = ",".join(task_ids)
try:
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.task_ids = task_ids
args.input_path = f"{lq_sequence}"
args.output_dir = f"{output_dir}"
args.mask_path = f"{mask}"
args.seed = int(seed)
args.restore_frames = False
gen(args,pipe)
# Search for the mp4 file in a subfolder of output_dir
output_video = glob(os.path.join(output_dir,"*gen.mp4"))
face_region_video = glob(os.path.join(output_dir,"*ori.mp4"))
# print(face_region_video,output_video)
if output_video:
output_video_path = output_video[0] # Get the first match
face_region_video_path = face_region_video[0] # Get the first match
else:
output_video_path = None
face_region_video = None
print(output_video_path,face_region_video_path)
if is_shared_ui:
# Clean up temporary input folder
shutil.rmtree(temp_input_folder)
torch.cuda.empty_cache()
return face_region_video_path,output_video_path
except subprocess.CalledProcessError as e:
if is_shared_ui:
# Clean up temporary input folder
shutil.rmtree(temp_input_folder)
torch.cuda.empty_cache()
raise gr.Error(f"Error during inference: {str(e)}")
css="""
div#col-container{
margin: 0 auto;
max-width: 982px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# SVFR: A Unified Framework for Generalized Video Face Restoration")
gr.Markdown("SVFR is a unified framework for face video restoration that supports tasks such as BFR, Colorization, Inpainting, and their combinations within one cohesive system.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/wangzhiyaoo/SVFR">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://wangzhiyaoo.github.io/SVFR/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/pdf/2501.01235">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/SVFR-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
input_seq = gr.Video(label="Video LQ")
task_name = gr.CheckboxGroup(
label="Task",
choices=["BFR", "Colorization", "Inpainting"],
value=["BFR"] # default
)
mask_input = gr.Image(type="filepath",label="Inpainting Mask")
with gr.Row():
seed_input = gr.Number(label="Seed", value=77, precision=0)
random_seed_btn = gr.Button("🎲",scale=1,elem_id="dice-btn")
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column():
output_face = gr.Video(label="Face Region Input")
output_res = gr.Video(label="Restored")
gr.Examples(
examples = [
["./assert/lq/lq1.mp4", ["BFR"],None],
["./assert/lq/lq2.mp4", ["BFR", "Colorization"],None],
["./assert/lq/lq3.mp4", ["BFR", "Colorization", "Inpainting"],"./assert/mask/lq3.png"]
],
inputs = [input_seq, task_name, mask_input]
)
random_seed_btn.click(
fn=random_seed,
inputs=[],
outputs=seed_input
)
submit_btn.click(
fn = infer,
inputs = [input_seq, task_name, mask_input,seed_input],
outputs = [output_face,output_res]
)
clear_btn.click(
fn=lambda: [None,["BFR"],None,77,None,None],
inputs=None,
outputs=[input_seq, task_name, mask_input, seed_input, output_face, output_res]
)
demo.queue().launch(show_api=False, show_error=True) |