Spaces:
Running
on
L40S
Running
on
L40S
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import shutil
|
6 |
+
import tempfile
|
7 |
+
import uuid
|
8 |
+
import gradio as gr
|
9 |
+
from glob import glob
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
+
|
12 |
+
# Download models
|
13 |
+
os.makedirs("models", exist_ok=True)
|
14 |
+
|
15 |
+
snapshot_download(
|
16 |
+
repo_id = "fffiloni/SVFR",
|
17 |
+
local_dir = "./models"
|
18 |
+
)
|
19 |
+
|
20 |
+
# List of subdirectories to create inside "checkpoints"
|
21 |
+
subfolders = [
|
22 |
+
"stable-video-diffusion-img2vid-xt"
|
23 |
+
]
|
24 |
+
# Create each subdirectory
|
25 |
+
for subfolder in subfolders:
|
26 |
+
os.makedirs(os.path.join("models", subfolder), exist_ok=True)
|
27 |
+
|
28 |
+
snapshot_download(
|
29 |
+
repo_id = "stabilityai/stable-video-diffusion-img2vid-xt",
|
30 |
+
local_dir = "./models/stable-video-diffusion-img2vid-xt"
|
31 |
+
)
|
32 |
+
|
33 |
+
def infer(lq_sequence, task_name):
|
34 |
+
|
35 |
+
unique_id = str(uuid.uuid4())
|
36 |
+
output_dir = f"results_{unique_id}"
|
37 |
+
|
38 |
+
if task_name == "BFR":
|
39 |
+
task_id = "0"
|
40 |
+
elif task_name == "colorization":
|
41 |
+
task_id = "1"
|
42 |
+
elif task_name == "BFR + colorization":
|
43 |
+
task_id = "0,1"
|
44 |
+
|
45 |
+
try:
|
46 |
+
# Run the inference command
|
47 |
+
subprocess.run(
|
48 |
+
[
|
49 |
+
"python", "infer.py",
|
50 |
+
"--config", "config/infer.yaml"
|
51 |
+
"--task_ids", f"{task_id}"
|
52 |
+
"--input_path", f"{lq_sequence}"
|
53 |
+
"--output_dir", f"{output_dir}",
|
54 |
+
],
|
55 |
+
check=True
|
56 |
+
)
|
57 |
+
|
58 |
+
# Search for the mp4 file in a subfolder of output_dir
|
59 |
+
output_video = glob(os.path.join(output_dir,"*.mp4"))
|
60 |
+
print(output_video)
|
61 |
+
|
62 |
+
if output_video:
|
63 |
+
output_video_path = output_video[0] # Get the first match
|
64 |
+
else:
|
65 |
+
output_video_path = None
|
66 |
+
|
67 |
+
print(output_video_path)
|
68 |
+
return output_video_path
|
69 |
+
|
70 |
+
except subprocess.CalledProcessError as e:
|
71 |
+
raise gr.Error(f"Error during inference: {str(e)}")
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
with gr.Column():
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
input_seq = gr.Video(label="Video LQ")
|
78 |
+
task_name = gr.Radio(
|
79 |
+
label="Task",
|
80 |
+
choices=["BFR", "colorization", "BFR + colorization"],
|
81 |
+
value="BFR"
|
82 |
+
)
|
83 |
+
submit_btn = gr.Button("Submit")
|
84 |
+
with gr.Column():
|
85 |
+
output_res = gr.Video(label="Restored")
|
86 |
+
gr.Examples(
|
87 |
+
examples = [
|
88 |
+
["./assert/lq/lq1.mp4", "BFR"],
|
89 |
+
["./assert/lq/lq2mp4", "BFR + colorization"],
|
90 |
+
["./assert/lq/lq3.mp4", "colorization"]
|
91 |
+
],
|
92 |
+
inputs = [input_seq, task_name]
|
93 |
+
)
|
94 |
+
|
95 |
+
submit_btn.click(
|
96 |
+
fn = infer,
|
97 |
+
inputs = [input_seq, task_name],
|
98 |
+
outputs = [output_res]
|
99 |
+
)
|
100 |
+
|
101 |
+
demo.queue().launch(show_api=False, show_error=True)
|