Spaces:
Running
on
L40S
Running
on
L40S
File size: 12,251 Bytes
bdd549c 25d1b89 bdd549c 25d1b89 bdd549c 25d1b89 bdd549c 25d1b89 bdd549c 25d1b89 bdd549c 25d1b89 bdd549c 25d1b89 bdd549c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import argparse
import warnings
import os
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
import random
from omegaconf import OmegaConf
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPVisionModelWithProjection
import torchvision.transforms as transforms
import torch.nn.functional as F
from src.models.svfr_adapter.unet_3d_svd_condition_ip import UNet3DConditionSVDModel
# pipeline
from src.pipelines.pipeline import LQ2VideoLongSVDPipeline
from src.utils.util import (
save_videos_grid,
seed_everything,
)
from torchvision.utils import save_image
from src.models.id_proj import IDProjConvModel
from src.models import model_insightface_360k
from src.dataset.face_align.align import AlignImage
warnings.filterwarnings("ignore")
import decord
import cv2
from src.dataset.dataset import get_affine_transform, mean_face_lm5p_256, get_union_bbox, process_bbox, crop_resize_img
BASE_DIR = '.'
def main(config,args):
if 'CUDA_VISIBLE_DEVICES' in os.environ:
cuda_visible_devices = os.environ['CUDA_VISIBLE_DEVICES']
print(f"CUDA_VISIBLE_DEVICES is set to: {cuda_visible_devices}")
else:
print("CUDA_VISIBLE_DEVICES is not set.")
save_dir = f"{BASE_DIR}/{args.output_dir}"
os.makedirs(save_dir,exist_ok=True)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="vae",
variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="image_encoder",
variant="fp16")
unet = UNet3DConditionSVDModel.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="unet",
variant="fp16")
weight_dir = 'models/face_align'
det_path = os.path.join(BASE_DIR, weight_dir, 'yoloface_v5m.pt')
align_instance = AlignImage("cuda", det_path=det_path)
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
import torch.nn as nn
class InflatedConv3d(nn.Conv2d):
def forward(self, x):
x = super().forward(x)
return x
# Add ref channel
old_weights = unet.conv_in.weight
old_bias = unet.conv_in.bias
new_conv1 = InflatedConv3d(
12,
old_weights.shape[0],
kernel_size=unet.conv_in.kernel_size,
stride=unet.conv_in.stride,
padding=unet.conv_in.padding,
bias=True if old_bias is not None else False,
)
param = torch.zeros((320, 4, 3, 3), requires_grad=True)
new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights, param), dim=1))
if old_bias is not None:
new_conv1.bias = old_bias
unet.conv_in = new_conv1
unet.config["in_channels"] = 12
unet.config.in_channels = 12
id_linear = IDProjConvModel(in_channels=512, out_channels=1024).to(device='cuda')
# load pretrained weights
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
unet.load_state_dict(
torch.load(unet_checkpoint_path, map_location="cpu"),
strict=True,
)
id_linear_checkpoint_path = os.path.join(BASE_DIR, config.id_linear_checkpoint_path)
id_linear.load_state_dict(
torch.load(id_linear_checkpoint_path, map_location="cpu"),
strict=True,
)
net_arcface = model_insightface_360k.getarcface(f'{BASE_DIR}/{config.net_arcface_checkpoint_path}').eval().to(device="cuda")
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(
f"Do not support weight dtype: {config.weight_dtype} during training"
)
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
id_linear.to(weight_dtype)
net_arcface.requires_grad_(False).to(weight_dtype)
pipe = LQ2VideoLongSVDPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
feature_extractor=None
)
pipe = pipe.to("cuda", dtype=unet.dtype)
seed_input = args.seed
seed_everything(seed_input)
video_path = args.input_path
task_ids = args.task_ids
if 2 in task_ids and args.mask_path is not None:
mask_path = args.mask_path
mask = Image.open(mask_path).convert("L")
mask_array = np.array(mask)
white_positions = mask_array == 255
print('task_ids:',task_ids)
task_prompt = [0,0,0]
for i in range(3):
if i in task_ids:
task_prompt[i] = 1
print("task_prompt:",task_prompt)
video_name = video_path.split('/')[-1]
# print(video_name)
if os.path.exists(os.path.join(save_dir, "result_frames", video_name[:-4])):
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
# continue
cap = decord.VideoReader(video_path, fault_tol=1)
total_frames = len(cap)
T = total_frames #
print("total_frames:",total_frames)
step=1
drive_idx_start = 0
drive_idx_list = list(range(drive_idx_start, drive_idx_start + T * step, step))
assert len(drive_idx_list) == T
# Crop faces from the video for further processing
bbox_list = []
frame_interval = 5
for frame_count, drive_idx in enumerate(drive_idx_list):
if frame_count % frame_interval != 0:
continue
frame = cap[drive_idx].asnumpy()
_, _, bboxes_list = align_instance(frame[:,:,[2,1,0]], maxface=True)
if bboxes_list==[]:
continue
x1, y1, ww, hh = bboxes_list[0]
x2, y2 = x1 + ww, y1 + hh
bbox = [x1, y1, x2, y2]
bbox_list.append(bbox)
bbox = get_union_bbox(bbox_list)
bbox_s = process_bbox(bbox, expand_radio=0.4, height=frame.shape[0], width=frame.shape[1])
imSameIDs = []
vid_gt = []
for i, drive_idx in enumerate(drive_idx_list):
frame = cap[drive_idx].asnumpy()
imSameID = Image.fromarray(frame)
imSameID = crop_resize_img(imSameID, bbox_s)
imSameID = imSameID.resize((512,512))
if 1 in task_ids:
imSameID = imSameID.convert("L") # Convert to grayscale
imSameID = imSameID.convert("RGB")
image_array = np.array(imSameID)
if 2 in task_ids and args.mask_path is not None:
image_array[white_positions] = [255, 255, 255] # mask for inpainting task
vid_gt.append(np.float32(image_array/255.))
imSameIDs.append(imSameID)
vid_lq = [(torch.from_numpy(frame).permute(2,0,1) - 0.5) / 0.5 for frame in vid_gt]
val_data = dict(
pixel_values_vid_lq = torch.stack(vid_lq,dim=0),
# pixel_values_ref_img=self.to_tensor(target_image),
# pixel_values_ref_concat_img=self.to_tensor(imSrc2),
task_ids=task_ids,
task_id_input=torch.tensor(task_prompt),
total_frames=total_frames,
)
window_overlap=0
inter_frame_list = get_overlap_slide_window_indices(val_data["total_frames"],config.data.n_sample_frames,window_overlap)
lq_frames = val_data["pixel_values_vid_lq"]
task_ids = val_data["task_ids"]
task_id_input = val_data["task_id_input"]
height, width = val_data["pixel_values_vid_lq"].shape[-2:]
print("Generating the first clip...")
output = pipe(
lq_frames[inter_frame_list[0]].to("cuda").to(weight_dtype), # lq
None, # ref concat
torch.zeros((1, len(inter_frame_list[0]), 49, 1024)).to("cuda").to(weight_dtype),# encoder_hidden_states
task_id_input.to("cuda").to(weight_dtype),
height=height,
width=width,
num_frames=len(inter_frame_list[0]),
decode_chunk_size=config.decode_chunk_size,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale=config.min_appearance_guidance_scale,
max_guidance_scale=config.max_appearance_guidance_scale,
overlap=config.overlap,
frames_per_batch=len(inter_frame_list[0]),
num_inference_steps=50,
i2i_noise_strength=config.i2i_noise_strength,
)
video = output.frames
ref_img_tensor = video[0][:,-1]
ref_img = (video[0][:,-1] *0.5+0.5).clamp(0,1) * 255.
ref_img = ref_img.permute(1,2,0).cpu().numpy().astype(np.uint8)
pts5 = align_instance(ref_img[:,:,[2,1,0]], maxface=True)[0][0]
warp_mat = get_affine_transform(pts5, mean_face_lm5p_256 * height/256)
ref_img = cv2.warpAffine(np.array(Image.fromarray(ref_img)), warp_mat, (height, width), flags=cv2.INTER_CUBIC)
ref_img = to_tensor(ref_img).to("cuda").to(weight_dtype)
# save_image(ref_img*0.5 + 0.5,f"{save_dir}/ref_img_align.png")
ref_img = F.interpolate(ref_img.unsqueeze(0)[:, :, 0:224, 16:240], size=[112, 112], mode='bilinear')
_, id_feature_conv = net_arcface(ref_img)
id_embedding = id_linear(id_feature_conv)
print('Generating all video clips...')
video = pipe(
lq_frames.to("cuda").to(weight_dtype), # lq
ref_img_tensor.to("cuda").to(weight_dtype),
id_embedding.unsqueeze(1).repeat(1, len(lq_frames), 1, 1).to("cuda").to(weight_dtype), # encoder_hidden_states
task_id_input.to("cuda").to(weight_dtype),
height=height,
width=width,
num_frames=val_data["total_frames"],#frame_num,
decode_chunk_size=config.decode_chunk_size,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale=config.min_appearance_guidance_scale,
max_guidance_scale=config.max_appearance_guidance_scale,
overlap=config.overlap,
frames_per_batch=config.data.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength,
).frames
video = (video*0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(device="cuda")], dim=0).cpu()
save_videos_grid(video, f"{save_dir}/{video_name[:-4]}_{seed_input}_gen.mp4", n_rows=1, fps=25)
lq_frames = lq_frames.permute(1,0,2,3).unsqueeze(0)
lq_frames = (lq_frames * 0.5 + 0.5).clamp(0, 1).to(device="cuda").cpu()
save_videos_grid(lq_frames, f"{save_dir}/{video_name[:-4]}_{seed_input}_ori.mp4", n_rows=1, fps=25)
if args.restore_frames:
video = video.squeeze(0)
os.makedirs(os.path.join(save_dir, "result_frames", f"{video_name[:-4]}_{seed_input}"),exist_ok=True)
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
for i in range(video.shape[1]):
save_frames_path = os.path.join(f"{save_dir}/result_frames", f"{video_name[:-4]}_{seed_input}", f'{i:08d}.png')
save_image(video[:,i], save_frames_path)
def get_overlap_slide_window_indices(video_length, window_size, window_overlap):
inter_frame_list = []
for j in range(0, video_length, window_size-window_overlap):
inter_frame_list.append( [e % video_length for e in range(j, min(j + window_size, video_length))] )
return inter_frame_list
if __name__ == "__main__":
def parse_list(value):
return [int(x) for x in value.split(",")]
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/infer.yaml")
parser.add_argument("--output_dir", type=str, default="output")
parser.add_argument("--seed", type=int, default=77)
parser.add_argument("--task_ids", type=parse_list, default=[0])
parser.add_argument("--input_path", type=str, default='./assert/lq/lq3.mp4')
parser.add_argument("--mask_path", type=str, default=None)
parser.add_argument("--restore_frames", action='store_true')
args = parser.parse_args()
config = OmegaConf.load(args.config)
main(config, args)
|