File size: 11,992 Bytes
bdd549c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# -*- coding: UTF-8 -*-
import os
import cv2
import numpy as np
import torch
import torchvision


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
             torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    # iou = inter / (area1 + area2 - inter)
    return inter / (area1[:, None] + area2 - inter)


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def clip_coords(boxes, img_shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    boxes[:, 0].clamp_(0, img_shape[1])  # x1
    boxes[:, 1].clamp_(0, img_shape[0])  # y1
    boxes[:, 2].clamp_(0, img_shape[1])  # x2
    boxes[:, 3].clamp_(0, img_shape[0])  # y2


def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2, 4, 6, 8]] -= pad[0]  # x padding
    coords[:, [1, 3, 5, 7, 9]] -= pad[1]  # y padding
    coords[:, :10] /= gain
    #clip_coords(coords, img0_shape)
    coords[:, 0].clamp_(0, img0_shape[1])  # x1
    coords[:, 1].clamp_(0, img0_shape[0])  # y1
    coords[:, 2].clamp_(0, img0_shape[1])  # x2
    coords[:, 3].clamp_(0, img0_shape[0])  # y2
    coords[:, 4].clamp_(0, img0_shape[1])  # x3
    coords[:, 5].clamp_(0, img0_shape[0])  # y3
    coords[:, 6].clamp_(0, img0_shape[1])  # x4
    coords[:, 7].clamp_(0, img0_shape[0])  # y4
    coords[:, 8].clamp_(0, img0_shape[1])  # x5
    coords[:, 9].clamp_(0, img0_shape[0])  # y5
    return coords


def show_results(img, xywh, conf, landmarks, class_num):
    h,w,c = img.shape
    tl = 1 or round(0.002 * (h + w) / 2) + 1  # line/font thickness
    x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
    y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
    x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
    y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
    cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)

    clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]

    for i in range(5):
        point_x = int(landmarks[2 * i] * w)
        point_y = int(landmarks[2 * i + 1] * h)
        cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)

    tf = max(tl - 1, 1)  # font thickness
    label = str(conf)[:5]
    cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
    return img


def make_divisible(x, divisor):
    # Returns x evenly divisible by divisor
    return (x // divisor) * divisor


def non_max_suppression_face(prediction, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, labels=()):
    """Performs Non-Maximum Suppression (NMS) on inference results
    Returns:
         detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
    """

    nc = prediction.shape[2] - 15  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Settings
    min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
    # time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label = nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    # t = time.time()
    output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            l = labels[xi]
            v = torch.zeros((len(l), nc + 15), device=x.device)
            v[:, :4] = l[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(l)), l[:, 0].long() + 15] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 15:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, landmarks, cls)
        if multi_label:
            i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 15:].max(1, keepdim=True)
            x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # If none remain process next image
        n = x.shape[0]  # number of boxes
        if not n:
            continue

        # Batched NMS
        c = x[:, 15:16] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        #if i.shape[0] > max_det:  # limit detections
        #    i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        # if (time.time() - t) > time_limit:
        #     break  # time limit exceeded

    return output


class YoloFace():
    def __init__(self, pt_path='checkpoints/yolov5m-face.pt', confThreshold=0.5, nmsThreshold=0.45, device='cuda'):
        assert os.path.exists(pt_path)

        self.inpSize = 416
        self.conf_thres = confThreshold
        self.iou_thres = nmsThreshold
        self.test_device = torch.device(device if torch.cuda.is_available() else "cpu")
        self.model = torch.jit.load(pt_path).to(self.test_device)
        self.last_w = 416
        self.last_h = 416
        self.grids = None

    @torch.no_grad()
    def detect(self, srcimg):
        # t0=time.time()

        h0, w0 = srcimg.shape[:2]  # orig hw
        r = self.inpSize / min(h0, w0)  # resize image to img_size
        h1 = int(h0*r+31)//32*32
        w1 = int(w0*r+31)//32*32

        img = cv2.resize(srcimg, (w1,h1), interpolation=cv2.INTER_LINEAR)

        # Convert
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR to RGB

        # Run inference
        img = torch.from_numpy(img).to(self.test_device).permute(2,0,1)
        img = img.float()/255  # uint8 to fp16/32  0-1
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        if h1 != self.last_h or w1 != self.last_w or self.grids is None:
            grids = []
            for scale in [8,16,32]:
                ny = h1//scale
                nx = w1//scale
                yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
                grid = torch.stack((xv, yv), 2).view((1,1,ny, nx, 2)).float()
                grids.append(grid.to(self.test_device))
            self.grids = grids
            self.last_w = w1
            self.last_h = h1

        pred = self.model(img, self.grids).cpu()

        # Apply NMS
        det = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)[0]
        # Process detections
        # det = pred[0]
        bboxes = np.zeros((det.shape[0], 4))
        kpss = np.zeros((det.shape[0], 5, 2))
        scores = np.zeros((det.shape[0]))
        # gn = torch.tensor([w0, h0, w0, h0]).to(pred)  # normalization gain whwh
        # gn_lks = torch.tensor([w0, h0, w0, h0, w0, h0, w0, h0, w0, h0]).to(pred)  # normalization gain landmarks
        det = det.cpu().numpy()

        for j in range(det.shape[0]):
            # xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(4).cpu().numpy()
            bboxes[j, 0] = det[j, 0] * w0/w1
            bboxes[j, 1] = det[j, 1] * h0/h1
            bboxes[j, 2] = det[j, 2] * w0/w1 - bboxes[j, 0]
            bboxes[j, 3] = det[j, 3] * h0/h1 - bboxes[j, 1]
            scores[j] = det[j, 4]
            # landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(5,2).cpu().numpy()
            kpss[j, :, :] = det[j, 5:15].reshape(5, 2) * np.array([[w0/w1,h0/h1]])
                # class_num = det[j, 15].cpu().numpy()
                # orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
        return bboxes, kpss, scores



if __name__ == '__main__':
    import time

    imgpath = 'test.png'

    yoloface = YoloFace(pt_path='../checkpoints/yoloface_v5m.pt')
    srcimg = cv2.imread(imgpath)

    #warpup
    bboxes, kpss, scores = yoloface.detect(srcimg)
    bboxes, kpss, scores = yoloface.detect(srcimg)
    bboxes, kpss, scores = yoloface.detect(srcimg)

    t1 = time.time()
    for _ in range(10):
        bboxes, kpss, scores = yoloface.detect(srcimg)
    t2 = time.time()
    print('total time: {} ms'.format((t2 - t1) * 1000))
    for i in range(bboxes.shape[0]):
        xmin, ymin, xamx, ymax = int(bboxes[i, 0]), int(bboxes[i, 1]), int(bboxes[i, 0] + bboxes[i, 2]), int(bboxes[i, 1] + bboxes[i, 3])
        cv2.rectangle(srcimg, (xmin, ymin), (xamx, ymax), (0, 0, 255), thickness=2)
        for j in range(5):
            cv2.circle(srcimg, (int(kpss[i, j, 0]), int(kpss[i, j, 1])), 1, (0, 255, 0), thickness=5)
    cv2.imwrite('test_yoloface.jpg', srcimg)