Spaces:
Running
on
L40S
Running
on
L40S
File size: 1,528 Bytes
bdd549c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
import numpy as np
import random
from PIL import Image
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from transformers import CLIPImageProcessor
# import librosa
import os
import cv2
mean_face_lm5p_256 = np.array([
[(30.2946+8)*2+16, 51.6963*2],
[(65.5318+8)*2+16, 51.5014*2],
[(48.0252+8)*2+16, 71.7366*2],
[(33.5493+8)*2+16, 92.3655*2],
[(62.7299+8)*2+16, 92.2041*2],
], dtype=np.float32)
def get_affine_transform(target_face_lm5p, mean_lm5p):
mat_warp = np.zeros((2,3))
A = np.zeros((4,4))
B = np.zeros((4))
for i in range(5):
A[0][0] += target_face_lm5p[i][0] * target_face_lm5p[i][0] + target_face_lm5p[i][1] * target_face_lm5p[i][1]
A[0][2] += target_face_lm5p[i][0]
A[0][3] += target_face_lm5p[i][1]
B[0] += target_face_lm5p[i][0] * mean_lm5p[i][0] + target_face_lm5p[i][1] * mean_lm5p[i][1] #sb[1] += a[i].x*b[i].y - a[i].y*b[i].x;
B[1] += target_face_lm5p[i][0] * mean_lm5p[i][1] - target_face_lm5p[i][1] * mean_lm5p[i][0]
B[2] += mean_lm5p[i][0]
B[3] += mean_lm5p[i][1]
A[1][1] = A[0][0]
A[2][1] = A[1][2] = -A[0][3]
A[3][1] = A[1][3] = A[2][0] = A[0][2]
A[2][2] = A[3][3] = 5
A[3][0] = A[0][3]
_, mat23 = cv2.solve(A, B, flags=cv2.DECOMP_SVD)
mat_warp[0][0] = mat23[0]
mat_warp[1][1] = mat23[0]
mat_warp[0][1] = -mat23[1]
mat_warp[1][0] = mat23[1]
mat_warp[0][2] = mat23[2]
mat_warp[1][2] = mat23[3]
return mat_warp
|